
A Coq formalization of digital filters

Diane Gallois-Wong1,2?, Sylvie Boldo3,2, Thibault Hilaire3,2,4

1 Université Paris-Sud
2 LRI, CNRS & Univ. Paris-Sud, Université Paris-Saclay, bâtiment 650, Université

Paris-Sud, F-91405 Orsay Cedex, France
3 Inria

4 Sorbonne Université, F-75005 Paris, France

Abstract. Digital filters are small iterative algorithms, used as basic
bricks in signal processing (filters) and control theory (controllers). They
receive as input a stream of values, and output another stream of val-
ues, computed from their internal state and from the previous inputs.
These systems can be found in communication, aeronautics, automotive,
robotics, etc. As the application domain may be critical, we aim at pro-
viding a formal guarantee of the good behavior of these algorithms in
time-domain. In particular, we formally proved in Coq some error analy-
sis theorems about digital filters, namely the Worst-Case Peak Gain the-
orem and the existence of a filter characterizing the difference between
the exact filter and the implemented one. Moreover, the digital signal
processing literature provides us with many equivalent algorithms, called
realizations. We formally defined and proved the equivalence of several
realizations (Direct Forms and State-Space).

1 Introduction

Most embedded systems, from planes to MP3 players, rely on numerical signal
processing filters. Such a filter takes as inputs an infinite sequence of values, such
as measurements of sensors, and returns an infinite sequence of values, such as
a sound to be played or a value to control a nuclear power plant (see also §2.2).
Applications of digital filters are therefore numerous, from trivial to life-critical,
and formal methods have already been applied to such systems.

Digital filters have previously been formalized in HOL [1]: Akbarpour and
Tahar define filters and somehow define the error filter as done in §5.1. But they
do not bound the output error, while we do it using the Worst-Case Peak Gain
(WCPG) Theorem of §5.2. We indeed benefit from the most recent advances for
filter error bounding [2]. Another recent work in HOL by Siddique et al. focuses
on the frequency-domain analysis and the z-Transform [3]. They consider causal
filters and difference equations with definitions similar to ours. But their analysis
is complementary to ours as we choose a time-domain analysis in order to next
focus on finite-precision implementations. Akbarpour et al. previously compared
floating-point and fixed-point implementations of digital filters to ensure their
? This work is supported by a grant from the “Fondation CFM pour la Recherche”.

similar behavior [4]. But they require many hypotheses, including the absence
of overflow in the computations. Park et al. aim at specifying filters and then
proving their correctness [5], assuming that all the computations are exact. They
then relax this assumption, but bound the floating-point error for one iteration
step only, while the difficult part is the propagation of these errors [6]. Last, Feret
developed a specific abstract domain for digital filters [7]. Finally, references in
digital signal processing can be found in §2.

This paper presents a formalization of digital filters in the Coq proof assis-
tant [8,9].5 We rely on the standard library for defining reals and on the Coqueli-
cot library [10] for real analysis and for the Limited Principle of Omniscience
(LPO) which is derived from the axiomatization of reals. In addition, we use two
axioms. Firstly, Functional Extensionality states that two functions sharing the
same value on every input are equal. Secondly, Proof Irrelevance means that two
proofs of the same property are equal. These axioms are often used to handle
functions and proof objects in a more natural way and are considered safe.

The goals of this paper are a formal definition of a digital filter, its various
algorithms and their equivalences, and some formal definitions and proofs about
the error analysis to be used for fixed-point and floating-point implementations.
This paper is organized as follows. Section §2 gives some background on signal
processing and numerical filters. Section §3 presents our formalization choices.
Section §4 defines some of the many (mathematically) equivalent algorithms,
called realizations, that are used to describe a filter in signal processing. We also
prove their equivalences, so that results established for one of them also hold
for the others. Section §5 proves the error filter decomposition and the Worst-
Case Peak-Gain theorem. Together, these two results allow to bound the final
impact of adding a bounded error term at each computation step, having taken
into account the propagation of these errors as each of them affects every future
step. We were able to formalize this using only real numbers as there is no need
to know where the error terms come from, but of course this is intended to
be applied to rounding errors in finite-precision arithmetic. Finally, Section §6
concludes and gives some perspectives.

Notation: throughout the article, matrices are in uppercase boldface (e.g.A),
vectors are in lowercase boldface (e.g. a), scalars are in lowercase (e.g. a). The
matrix In is the identity matrix of size n.

2 Digital filters

2.1 Signals and operations

A discrete-time signal x is an ordered sequence of numbers denoted x(k), where
k is an integer. In a practical setting, such sequences often arise from periodic
sampling of continuous time signals xc(t) where t represents time.

The signal x can be defined for any integer k or for some finite contiguous set
of integers. We here restrict k to be in N, or more precisely k to be in Z, but with
x(k) = 0 for k < 0. A signal can be real (x(k) ∈ R) or vector (x(k) ∈ Rp×1).
5 Available at www.lri.fr/~gallois/code/coq-digital-filters-CICM18.tgz

www.lri.fr/~gallois/code/coq-digital-filters-CICM18.tgz

The simplest signal is probably the impulse signal (also called Dirac signal),

denoted δ and defined as δ(k) =

{
1 if k = 0

0 elsewhere.
This signal is central in linear signal processing theory since any signal can

be expressed as an infinite sum of impulse signals (see §2.3).
Three elementary operations on signals can be defined:

– Addition: The sum of two signals x1 and x2 is their term-by-term sum, i.e.
y = x1 + x2 means ∀k, y(k) = x1(k) + x2(k).

– Scaling: y = αx is the sequence x scaled by α ∈ R, i.e. ∀k, y(k) = αx(k).
– Time shifting or delay: Let y be the sequence x shifted in time by an integer

K ≥ 0, then ∀k, y(k) =

{
x(k −K) if k ≥ K
0 elsewhere.

2.2 Linear Time Invariant filters

A filter H is a mathematical transformation that maps an input signal u into
an output signal y = H {u}, as shown in Figure 1. At each time k, the filter
produces an output y(k). But, contrary to usual mathematical functions, the
output y(k) depends not only on the input u(k), but also on the internal state
of the filter (i.e. on the initial condition of the filter and the previous inputs).

H
u(k) y(k)

Fig. 1: A discrete-time filter.

A linear time invariant (LTI) filter satisfies the two following properties:

– Linearity: The filter is linear with respect to its input, i.e.

H {αu1 + βu2} = αH {u1}+ βH {u2} (1)

– Shift invariance: if the input of the filter is delayed by K ≥ 0 samples, then
the output is also delayed by K samples, i.e. if ∀k, u1(k) = u2(k −K), then

∀k, H {u1}(k) =

{
H {u2}(k −K) if k ≥ K
0 otherwise.

(2)

The filter can have as inputs and outputs either scalars (Single-Input Single-
Output filter, aka SISO filter), or vectors (Multiple-Input Multiple-Output filter,
aka MIMO filter). Due to the linearity of LTI filters, a q-input p-output MIMO
filter can be seen as the assembly of p× q SISO filters, where the ijth element is
the filter that captures the effect of the jth input on the ith output.

LTI filters are compositions of the three elementary operations on signals
(addition/subtraction, multiplication by constant and delay, the last one being
classically denoted z−1 as in the z-transform [11,12]). Data-flow graphs using
these operations as blocks and signal as streams are widely used in signal and
control theory to describe the different realizations, as shown in Figures 3a, 3b,
and 4a.

2.3 Impulse response

The impulse response of a SISO filter H , denoted h, is the answer (output) of
the filter to an impulse input δ (i.e. h = H {δ}).

Since any input u can be written as an infinite sum of weighted shifted
impulses u(k) =

∑
l∈Z u(l)δ(k− l), then, by linearity of the considered filter, the

output y of u through H can be obtained by

y(k) = H {u}(k) =
∑
l∈Z

u(l)h(k − l) (3)

The output y is obtained as a convolution of signals u and h. For that rea-
son, the impulse response of a filter fully defines it. From the impulse response
characterization, the LTI filters can be divided in two types: the Finite Impulse
Response (FIR) filters, where h is null above a certain time, and the Infinite
Impulse Response (IIR) filters, where h has infinite support [11].

2.4 Constant-Coefficient Difference Equation

An important subclass of LTI filters consists of those for which a n-order constant-
coefficient difference equation exists between inputs and outputs, i.e. the last n
inputs and outputs are linked by ∀k,

∑n
i=0 aiy(k − i) =

∑n
i=0 biu(k − i), where

the {ai}0≤i≤n and {bi}0≤i≤n are constant coefficients.
We also assume that a0 = 1, so that the equation is rearranged as

y(k) =

n∑
i=0

biu(k − i)−
n∑

i=1

aiy(k − i). (4)

This relationship describes an IIR filter as soon as the ai’s coefficients are not
all null, otherwise it describes an FIR filter. The value n is said to be the order
of the filter. These coefficients are also the coefficients of the transfer function
of the filter: this mathematical object describes its input-output relationship in
frequency domain (whereas (4) describes it in time domain). It has also been
formalized in Coq, but with few properties, and thus not presented here.

3 Formalization

3.1 Signals and filters

The first components required to work with digital filters are signals, presented
in §2.1. For now, we consider real signals (sequences of real numbers). We define
them as functions from Z to R that take the value 0 for every k < 0.

Definition causal (x : Z → R) := (forall k : Z, (k < 0)%Z → x k = 0%R).
Record signal := { signal_val :> Z → R ; signal_prop : causal signal_val }.

Axioms FunctionalExtensionality and ProofIrrelevance, discussed in the
introduction, ensure that signals are fully characterized by their values for k ≥ 0.

This definition of signals makes them easy to build recursively. Notably,
order-n recursion (when x(k) is built from x(k − 1), x(k − 2), ..., x(k − n)) is
very common when working with filters: for example, (4) is an order-n recursive
relation on y. For signals, the negative values are known (since they are zero), so
we may use an order-n recursion. See §3.2 for more on recursive constructions.

We could have defined signals as functions from N to R. Ironically, working
with N instead of Z would bring back problems of initialization and saturation.
We have considered and discarded several solutions to work with N: they either
complicated proofs by requiring to handle additional non-trivial cases, or used
alternative notations that made theorems more difficult to read and compare to
their usual signal processing formulation. For example, in order to understand
some statements, one is required to know that 0− 2 is equal to 0 when working
with N in Coq. Readability is very important to us as we want to spread formal
methods among the digital processing community. Ultimately, we felt that the
readability and the more intuitive subtraction offered by Z were worth adapting
a few libraries and recursive constructions.

We define the three elementary operations on signals described in §2.1, namely
addition, scaling by a real and time shift. We prove that the results are still sig-
nals (they take the value 0 for k < 0). The only interesting point is in the time
shift by an integer K, which usually requires that K ≥ 0: we arbitrarily choose
that it returns the null signal when K < 0, so that the function is total.

Once we have signals, filters are simply defined as functions from signals to
signals: Definition filter := signal −> signal. From the three elementary op-
erations on signals defined above (addition, scaling by a real and time shifting),
we define compatibility of a filter with addition, compatibility with scalar mul-
tiplication and shift invariance. Finally, we define LTI_filter : filter −> Prop
(linear time invariant filter) as the conjunction of these properties.

As explained in §2.2, a filter can be SISO (Single-Input Single-Output) when
it handles real signals as in the definition above, or MIMO (Multiple-Input
Multiple-Output) with vector signals. A vector signal is defined as a function
from Z to Rp that returns the null vector for every k < 0. A MIMO filter is then:

Definition MIMO_filter {N_in N_out : Z} :=
@vect_signal N_in −> @vect_signal N_out.

As in textbooks and for the sake of readability, most of our theorems are dedi-
cated to SISO filters. Nevertheless, we define the State-Space characterization of
a filter, presented in §4.3, for MIMO filters, as we explicitly need this to study
error propagation in §5.1.

3.2 Recursion over Z

To define a filter given by its constant-coefficient difference equation (4), we need
to build the output signal y by order-n recursion. In practice, we find it easier to
use strong recursion which is more general. The standard library has a lemma
Coq.ZArith.Wf_Z.Zlt_0_rec that shows that a construction by strong recursion
is possible for positive indexes, whereas what we want is the actual function
resulting from this construction. Therefore, we define Z_strong_rec which builds
this function. It takes an initialization function f_lt_0 that will only be used
for k < 0, and a step function f_rec that computes the image of k for k ≥ 0,
depending on the image of j for any j < k. If we note f |<k the restriction of f
to (−∞, k), Z_strong_rec builds the function f : Z→ T such that{

∀k < 0, f(k) = f_lt_0(k)

∀k ≥ 0, f(k) = f_rec(k)(f |<k)
(5)

Definition Z_strong_rec (f_lt_0 : Z −> T)
(f_rec : Z −> (Z −> T) −> T) (k : Z) : T := (...)

But, as we want to work with total functions, the second argument of f_rec
is total. When we write f |<k, we actually mean that it is equal to previously
computed values of f for j < k, and to default values for j ≥ k. As f_rec is
just an argument of Z_strong_rec, it could evaluate f |<k for j ≥ k, which would
make no sense from a recursion perspective. To have a proper recursive con-
struction, the argument f_rec needs to verify the property f_rec_well_formed,
which means that when we call f_rec (k : Z) (g : Z −> T) with k ≥ 0, the result
does not depend on the values of g for j ≥ k. Lemmas Z_strong_rec_lt_0 and
Z_strong_rec_ge_0 express (5), the second one needing the hypothesis that the
argument f_rec is well-formed. They serve as an interface so that outside of their
own proofs, the 13-line definition of Z_strong_rec is never expanded.

Definition f_rec_well_formed (f_rec : Z −> (Z −> T) −> T) : Prop :=
forall (k : Z) (g1 g2 : Z −> T), (k >= 0)%Z −>
(forall j : Z, (j < k)%Z −> g1 j = g2 j) −> f_rec k g1 = f_rec k g2.

Lemma Z_strong_rec_ge_0 f_lt_0 f_rec k :
(k >= 0)%Z −> f_rec_well_formed f_rec −>
Z_strong_rec f_lt_0 f_rec k = f_rec k (Z_strong_rec f_lt_0 f_rec).

For example, consider a signal x defined by the recursive relation x(k) =
x(k − 1) + x(k − 2). We define the function representing this relation:
f_rec := fun (k : Z) (g : Z −> R) => (g(k−1)%Z + g(k−2)%Z)%R, and we can prove
that it is well-formed. As a signal should be zero for k < 0, the initialization func-
tion is f_lt_0 := fun (k : Z) => 0%R. Then, (Z_strong_rec f_lt_0 f_rec) : Z −> R
is the function that corresponds to our signal x.

3.3 Adapting existing libraries to relative indexes

We build upon the Coquelicot library to obtain sums of consecutive terms of a
sequence and matrices that are compatible with relative indexes. Matrices with
relative indexes look strange, but there is no problem in practice, as relevant
indexes for a given matrix of size h × w are only subsets in any case: 1 ≤ i ≤ h
and 1 ≤ j ≤ w. We were careful to handle matrices without relying on the
particular Coquelicot definition, so that we can easily switch to other existing
libraries. In particular, we may use the Mathcomp library [13] and rely on its
linear algebra theorems to evaluate the WCPG defined in §5.2.

4 Filter realizations

To implement a filter, one needs an explicit algorithm, which produces at each k
an output y(k) from the input u(k) and its internal state. In the literature, a lot
of algorithms exist to implement a linear filter [11]: Direct Forms, State-Space,
Second-Order Sections, cascade or parallel decomposition, Lattice Wave Digital
filters [14], δ- or ρ-operator based filters [15,16], etc. Each of them presents some
advantages with respect to the number of coefficients, the software or hardware
adequacy, the finite-precision behavior, etc. and the choice of the realization is
itself a research domain [17].

We present here three classical realizations: Direct Form I (that comes from
the constant-coefficients difference equation (4)), Direct Form II (that uses the
same coefficients in another algorithm) and State-Space. In practice, these real-
izations are explained by a data-flow graph, that describes how data (signals)
are processed by a filter in terms of inputs and outputs.

4.1 Direct Form I

Direct Form I (DFI) comes directly from the constant-coefficient difference equa-
tion presented in §2.4: y(k) =

∑n
i=0 biu(k − i)−

∑n
i=1 aiy(k − i). It depends on

the 2n+ 1 transfer-function coefficients a1, a2, ..., an, b0, b1, ..., bn.

foreach k do

y(k)←
n∑

i=0

biu(k − i)−
n∑

i=1

aiy(k − i)

end

(a) Direct Form I

foreach k do

e(k)← u(k)−
n∑

i=1

aie(k − i)

y(k)←
n∑

i=1

bie(k − i)

end

(b) Direct Form II

Fig. 2: Direct Form I and II algorithms.

The corresponding algorithm is presented in Figure 2a and the data flow
graph in Figure 3a. The real program is slightly more complex: the n previous

u(k)
b0

z−1

b1

z−1

bi

z−1

bn

y(k)

z−1

−a1

z−1

−ai

z−1

−an

+

(a) Direct Form I

v(k)

z−1

z−1

z−1

−a1

−ai

−an

+

+

+ b0

b1

bi

bn

+

+

+

y(k)u(k)

(b) Direct Form II

Fig. 3: Direct Form I and II data-flow graphs.

values of u and y are stored in memory (the z−1 squares in the data flow graph
in Figure 3a represent delay, each one is a memory element).

In Coq, we define a type TFCoeffs for the transfer function coefficients. They
are given as an order n and two sequences a, b : Z→ R. In practice, n should be
positive, and we will only use the values a(i) for 1 ≤ i ≤ n and the values b(i)
for 0 ≤ i ≤ n. So far, we have not needed to enforce this in the definition.

Record TFCoeffs := { TFC_n : Z ; TFC_a : Z −> R ; TFC_b : Z −> R }.

The main component needed for our recursive construction of a signal x is a
function, noted f_rec in our definition of strong recursion (§3.2), that builds x(k)
for k ≥ 0 given all previous values of x. (DFI_f_rec tfc u) : Z −> (Z −> R) −> R
is such a function: it expresses the recursive relation characterizing the output
signal for input u of the filter defined by Direct Form I with the coefficients tfc.

From this, we define the function that builds a filter from its transfer function
coefficients using Direct Form I, called filter_from_TFC because Direct Form I
is the canonical way to build a filter from these coefficients.

Definition DFI_f_rec (tfc : TFCoeffs) (u : signal) :=
(fun (n : Z) (y_before_n : Z −> R) =>

(sum 0 (TFC_n tfc) (fun i => (TFC_b tfc i) ∗ u (n−i)%Z)%R)
− (sum 1 (TFC_n tfc) (fun i => (TFC_a tfc i) ∗ y_before_n (n−i)%Z)%R)).

Definition filter_from_TFC (tfc : TFCoeffs) : filter :=
fun (u : signal) => build_signal_rec (DFI_f_rec tfc u).

Finally, we prove that a filter built this way is LTI. This proof presents no
real difficulty once we have adequate lemmas about sum of consecutive value of
a sequence and recursive building of a signal.

4.2 Direct Form II

Direct Form II is quite similar to Direct Form I. It uses the same coefficients,
those of the transfer function. The main difference is that it only requires n
delays (instead of 2n), so it is more efficient to implement. It can be described
by the data flow graph of Figure 3b, or by the algorithm of Figure 2b.

Where Direct Form I builds the output y from previous values of both y and
the input u, Direct Form II builds an intermediary signal e from previous values
of itself and only the current value of u, then it builds y from previous values
of e. The Coq definitions reflect this. As the construction of e is recursive, we
define DFII_u2e_f_rec tfc u, which is the main function allowing to build e given
the transfer function coefficients and an input signal.

Combining the constructions of the intermediary signal e and of the output
signal y, we define filter_by_DFII which builds a filter from transfer function
coefficients using Direct Form II.

Definition DFII_u2e_f_rec (tfc : TFCoeffs) (u : signal) :=
fun (n : Z) (e_before_n : Z −> R) =>
u n − sum 1 (TFC_n tfc) (fun i => (TFC_a tfc i) ∗ e_before_n (n−i)%Z).

Definition DFII_e2y (tfc : TFCoeffs) (e : signal) := Build_signal
(fun n => sum 0 (TFC_n tfc) (fun i => (TFC_b tfc i) ∗ e (n−i)%Z)%R)
(DFII_e2y_prop tfc e).

Definition filter_by_DFII (tfc : TFCoeffs) : filter :=
fun (u : signal) => DFII_e2y tfc (build_signal_rec (DFII_u2e_f_rec tfc u)).

Finally, as Direct Form I and Direct Form II use the same coefficients, which
are also the coefficients associated to the transfer function, implementing either
of these algorithms with the same set of coefficients should produce the same
filter, meaning the same output even if the algorithms are different.

Theorem DFI_DFII_same_filter (tfc : TFCoeffs) :
filter_from_TFC tfc = filter_by_DFII tfc.

Since a filter built using filter_from_TFC (which is by definition built using
Direct Form I) is LTI, so is a filter built using Direct Form II.

4.3 State-Space

We now consider MIMO filters, which are needed for the error analysis in §5.1.
For a q-input p-output MIMO filter H , the State-Space representation is de-
scribed by four matrices (A,B,C,D). The corresponding algorithm is:{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

(6)

where x(k) ∈ Rn×1, u(k) ∈ Rq×1 and y(k) ∈ Rp×1 are the state vector, input
vector and output vector, respectively. The matrices A ∈ Rn×n, B ∈ Rn×q,
C ∈ Rp×n and D ∈ Rp×q characterize the filter H . Figure 4a exhibits its
data-flow graph, and Algorithm 4b its algorithm (scalar rewriting of (6)).

u(k)
B + z−1 C +

y(k)

D

A

(a) Data-flow graph.

foreach k do
for i ∈ {1, . . . , n} do

xi(k + 1)←
n∑

j=1

Aijxj(k) +
q∑

j=1

Bijuj(k)

end
for i ∈ {1, . . . , p} do

yi(k)←
n∑

j=1

Cijxj(k) +
q∑

j=1

Dijuj(k)

end
end

(b) Algorithm

Fig. 4: State-Space data-flow graph and algorithm.

In Coq, we define a State-Space as a record containing the size of the state
vector and the four matrices. Here @mtx R_Ring h w is the type of matrices of size
h× w with coefficients in the ring R.

Context { N_in N_out : Z }.
Record StateSpace := { StSp_n : Z ; (* size of the state vector *)

StSp_A : @mtx R_Ring StSp_n StSp_n ;
StSp_B : @mtx R_Ring StSp_n N_in ;
StSp_C : @mtx R_Ring N_out StSp_n ;
StSp_D : @mtx R_Ring N_out N_in }.

For a given State-Space and a given input vector signal u, we first define the
vector signal of state vectors x by recursion, then the input vector signal y from
u and x, following closely the relationship in (6). We obtain a function that
builds the MIMO filter corresponding to a State-Space. We also define a SISO
State-Space as a State-Space where the context variables N_in and N_out are
both 1. Then we define filter_from_StSp that associates a SISO filter to such a
State-Space. We also prove that a filter built from a State-Space is always LTI.

The impulse response h (introduced in §2.3) of a filter defined by a State-
Space is proved to be computable from the matrices of the State-Space with:

h(k) =

{
D if k = 0

CAk−1B if k > 0
(7)

Moreover, in SISO, a State-Space can also be built from the transfer function
coefficients. Below is one of many ways to build such a State-Space, requiring
(n+1)2 coefficients for the four matrices combined (note that C is a single-row
matrix, B single-column, and D single-row single-column):

A =

0 1 0 . . . 0

0
.

...
...

. 0
0 0 1
−an −a2 −a1

 , B =

0
...
...
0
1

C =

(
bn − anb0 b1 − a1b0

)
, D =

(
b0
)

(8)

Notation n := (TFC_n tfc).
Definition SISO_StSp_from_TFC : SISO_StateSpace := @Build_StateSpace 1 1
(*StSp_n*) n
(*StSp_A*) (make_mtx n n (fun i j =>

if Z_eq_dec i n then (− (TFC_a tfc (n+1−j)))
else if Z_eq_dec (i+1) j then 1 else 0))

(*StSp_B*) (make_mtx n 1 (fun i j => if Z_eq_dec i n then 1 else 0))
(*StSp_C*) (make_mtx 1 n (fun i j =>

TFC_b tfc (n+1−j) − TFC_a tfc (n+1−j) ∗ TFC_b tfc 0))
(*StSp_D*) (mtx_of_K (TFC_b tfc 0)).

Theorem StSp_TFC_same_filter (tfc : TFCoeffs) : (TFC_n tfc >= 0)%Z −>
filter_from_StSp (SISO_StSp_from_TFC tfc) = filter_from_TFC tfc.

We define a Coq function that associates a (Single Input Single Output)
State-Space to transfer function coefficients, by simply constructing the matrices
as in (8). More importantly, we prove that the filter built from such a State-Space
is the same as the filter obtained directly from the transfer function coefficients.

As we have seen previously, there are at least two ways to build a filter
directly from these coefficients: Direct Form I and Direct Form II. Although
Direct Form I is the canonical one, it is much easier to use Direct Form II in this
proof. The main step is to prove that for any k, the state vector x(k) contains
e(k−n) as its first coefficient, e(k−(n−1)) as its second one, etc. up to e(k−1) as
its n-th coefficient, where e is the auxiliary signal that appears in Direct Form II
(Figure 2b).

This is done by strong induction, with trivial initialization for k < 0 since
everything is zero. For k ≥ 0, the ones just above the diagonal in A and the
zeros in B mean that the coefficients 1 to n− 1 of x(k) are the coefficients 2 to
n of x(k − 1), so the only point left to prove is that x(k)n = e(k − 1). This is
ensured by the last line ofA and the last coefficient ofB, which make the matrix
operations in (6) unfold into exactly the computation of e(k) in Figure 2b.

Note that the matrices (A,B,C,D) are not uniquely defined for a given
filter: distinct State-Spaces describe distinct algorithms, but they may build
the same filter. So it is possible to search for the optimal State-Space when
considering the effect of the finite precision degradations [18].

5 Error analysis tools

We now aim at giving tools for a future full error analysis of implemented fil-
ters. Using finite precision arithmetic (floating- or fixed-point arithmetic), some
arithmetic operations may introduce errors (mainly because the number of bits
to represent the values is finite, and may be not enough to represent the exact
result). These errors are then to be taken into account in the following computa-
tions as they may accumulate over time. To bound this accumulation, §5.1 shows
that these errors may be extracted from the main computations. Their values
are then modified over time by to another filter. To bound this error, we now
only need to bound the maximal value of a filter (this may also help us prevent
overflows). This is done in §5.2 by the Worst-Case Peak Gain Theorem.

5.1 Error filter

Let us focus on the errors due to finite precision arithmetic, without more details
on this arithmetic. The corresponding quantization can be modeled as an extra
term, called roundoff error. We consider a State-Space (A,B,C,D), as this is
the most general of the realizations that we have presented. Indeed, we have
proven that from any other of these realizations, we can build a State-Space
that defines the same algorithm and thus the same filter.

At each step, the evaluation of the states and outputs (see Algorithm 4b) is
composed of sum-of-products (SoP), one per state and output. Since they are not
exact, each may produce an error, compared to the exact SoP. So (6) becomes:

x∗(k + 1)← Ax∗(k) +Bu(k) +εx(k)
y∗(k)← Cx∗(k) +Du(k) +εy(k)

(9)

where x∗(k) and y∗(k) are the computed values for the state vector and output
vector, and εx(k) and εy(k) are the vectors of roundoff errors due to the sum-of-
products evaluation. Denote ε(k) the column vector that aggregates those errors:

ε(k) =

(
εx(k)
εy(k)

)
∈ Rn+p, where n is the size of x(k) and p is the size of y(k).

In order to capture the effects of the finite precision implementation we must
take into account the propagation of the roundoff errors through the data-flow.
The output error ∆y(k) is defined as the difference between the outputs of the
implemented and the exact filters: ∆y(k) = y∗(k) − y(k). Subtracting (6) to
(9), it follows that∆y(k) can be seen as the output of the vector signal of errors
ε(k) through the filter Hε defined by the State-Space (A,Bε,C,Dε), where
Bε =

(
In 0

)
and Dε =

(
0 Ip

)
. Equivalently (thanks to the linearity of the

considered filter), the implemented filter can be seen as the sum of the exact
filter H and the error filter Hε with ε(k) as input, as shown on Figure 5.

The filter Hε expresses how the errors propagate through the filter, and
knowing some properties on the roundoff errors ε(k) will lead to properties on the
output errors ∆y(k), and hence on the accuracy of the implemented algorithm.

In Coq, we assume we are given a State-Space stsp, a vector input signal u and
vector error signals err_x and err_y. We also assume the obviously reasonable

H

Hε

u(k)

ε(k)

+

y(k)

∆y(k)

y∗(k)

Fig. 5: Equivalent filter, with errors separated.

hypotheses that the implicit size of output vectors for stsp and the order of stsp
are non-negative ((N_out >= 0)%Z and (StSp_n stsp >= 0)%Z). We define x’
(recursively) then y’ (using x’) the vector signals corresponding to x∗ and y∗
in (9). We define B_err and D_err the matrices corresponding to Bε and Dε

and errors as the vertical concatenation of err_x and err_y. We prove that y’ is
indeed the sum of the outputs of the exact filter described by stsp for input u,
and of the error filter described by a new State-Space stsp_err for input errors.

5.2 Worst-Case Peak Gain Theorem

The Worst-Case Peak Gain Theorem provides the maximum possible value for
the outputs of a state-space filter. Applied on the filter Hε, it gives a bound on
the output error due to the finite precision computations.

We consider H a SISO LTI filter. Its Worst-Case Peak Gain (WCPG) [19,20],
noted 〈〈H 〉〉, is an element of R defined as:

〈〈H 〉〉 =
∞∑
k=0

|h(k)| (10)

where h is the impulse response of H (see §2.3). If an input signal u is bounded
by M (∀k, |u(k)| ≤ M), then the corresponding output signal y is bounded by
the value 〈〈H 〉〉M ∈ R. We can also write this as an inequality over R:

∀u, sup
k∈Z

(H {u}(k)) ≤ 〈〈H 〉〉 sup
k∈Z

(u(k)) (11)

Moreover, the WCPG is optimal: it is the smallest number that verifies (11).
In Coq, we define the WCPG exactly as in (10) using Lim_seq from Coqueli-
cot [10].

Definition dirac : signal := (...) (* 0 -> 1, k <> 0 -> 0 *)
Definition impulse_response (H : filter) : signal := H dirac.
Definition sum_abs_IR (H : filter) (n : nat) :=
sum 0 (Z.of_nat n) (fun k : Z => Rabs ((impulse_response H) k)).

Definition wcpg (H : filter) : Rbar := Lim_seq (sum_abs_IR H).

To prove (11), we rely on the fact that the image by a LTI filter of a signal
u can be obtained as the convolution of u and the impulse response of the filter:
H {u}(k) =

∑
l∈Z u(l)h(k − l) (3). We also prove the optimality of the WCPG,

with two theorems depending on whether the WCPG is finite. For both of them,
from the definition of 〈〈H 〉〉 as an infinite sum, we can get an index N such that∑N

k=0 |h(k)| is sufficiently close to 〈〈H 〉〉. Then, we define a signal u such that
for 0 ≤ k ≤ N , u(k) is in {1,−1} and has the same sign as h(N − k). We obtain
H {u}(N) =

∑
l∈Z u(l)h(N − l) =

∑
0≤l≤N |h(l)|.

Theorem wcpg_theorem (H : filter) (u : signal) (M : R) :
LTI_filter H −> (forall k : Z, Rabs (u k) <= M) −>
(forall k : Z, Rbar_le (Rabs (H u k)) (Rbar_mult wcpg M)).

Theorem wcpg_optimal (H : filter) : LTI_filter H −> is_finite (wcpg H) −>
forall epsilon : R, epsilon > 0 −> exists (u : signal) (N : Z),
((forall k : Z, Rabs (u k) <= 1) /\ (H u) N > wcpg H − epsilon).

Theorem infinite_wcpg_optimal (H : filter) : LTI_filter H −>
wcpg H = p_infty −> forall M : R, exists (u : signal) (N : Z),
((forall k : Z, Rabs (u k) <= 1) /\ H u N > M).

Another important property of a filter is that, for any bounded input (∃M, ∀k,
|u(k)| ≤ M), the output is bounded as well (by a number M ′). This property
is known as the Bounded Input Bounded Output (BIBO) stability [21], and is
shared by most filters that are of practical interest. We easily defined the bounded
property for signals, and the BIBO property for filters. An important theorem is
that the WCPG of a LTI filter verifying this property is always finite.

Theorem BIBO_wcpg_finite (H : filter) :
LTI_filter H −> BIBO H −> is_finite (wcpg H).

The principle is to prove the contrapositive: if the WCPG is infinite then we will
build an input u bounded by 1 such that the output is unbounded. As seen in
the proof of optimality of the WCPG, for any bound M , we can construct an
input u bounded by 1 and an index N such that |H {u}(N)| > M . Two facts
allow us to get from this construction, where u can be chosen afterM , to a single
unbounded signal. Firstly, the property |H {u}(N)| > M only depends on values
of u for 0 ≤ k ≤ N . Secondly, we are able to adapt this construction to leave
an arbitrary number of preset input values unchanged: for any M ∈ R, K ∈ Z
and imposed values u(0), ..., u(K) that are bounded by 1, we can extend them
into a signal u still bounded by 1 such that |H {u}(N)| > M for some index N .
Iterating this construction, we build a signal such that its image has at least a
term exceeding 0, a term exceeding 1, and so on at least a term exceeding M for
any M ∈ Z. These repeated constructions are tricky to handle in Coq, and we
used the {...|...} strong existential construction rather than the existential
quantifier.We relied on the Limited Principle of Omniscience (LPO) to be able
to construct indices N as described above.

6 Conclusions and perspectives

We have formalized digital filters in the Coq proof assistant and provided sev-
eral realizations. For one of these realizations, namely the State-Space, we have
proved theorems about error analysis, that will be useful when finite-precision

arithmetic will come into play. A surprising difficulty was the induction on Z
as described in §3.2: it was to decide that the standard library results were
not exactly what we needed and to state the corresponding theorems and total
functions.

A part of the digital processing results we did not focus on is the transfer
function. We defined it but we have not yet linked it to the rest of the de-
velopment. The z-Transform has been formalized in HOL [12,3] and it will be
interesting to see if similar theorems may be proved with our Coq formalization.

The Worst-Case Peak Gain Theorem has been proved for the SISO filters,
including State-Space. The general formula 〈〈H 〉〉 = |D| +

∑∞
k=0

∣∣CAkB
∣∣ has

been proved withD and CAkB being 1×1 matrices, implicitly converted to real
numbers. To be applied on the error filter, the proof needs to be generalized to
MIMO filters, which is not difficult but cumbersome due to matrix manipulation.

To handle more realizations and develop proofs (such as error analysis proofs)
only once, we may use another realization called the Specialized Implicit Frame-
work (SIF) [22]. It was designed as a unifying tool to describe and encompass
all the possible realizations of a given transfer function (like the direct forms,
State-Spaces, cascade or parallel decomposition, etc.). SIF is an extension of the
State-Space realization, modified to allow chained Sum-of-Products operations.

A natural perspective is to handle floating-point and fixed-point computa-
tions. Indeed, digital filters are run on embedded software that cannot compute
with real numbers. As far as floating-point arithmetic is concerned, the Flocq
library [23] will suit our needs, but fixed-point will be more complicated. Even if
Flocq has a fixed-point format and the corresponding theorems, we want to take
overflow into account and this is hardly done within Flocq: only the IEEE-754
formalization of binary floating-point numbers assumes an upper bound on the
exponent. Moreover, we may want to have several handling of overflow as done
in [4]. We want at least three modes: i) ensuring that no overflow happens; ii)
two’s complement arithmetic, where a modulo operation is used when overflow
happens; iii) saturation arithmetic, where the maximal value is used when over-
flow happens. Adding two’s complement and overflow modes to Flocq will be
a necessary step towards the formal proof of the behaviors of embedded digital
filters.

The final use of this work is to handle industrial applications, like the filters
and controllers used in telecommunication, automotive or aeronautic with the
following flow. Some filter specifications (like a transfer function) first gives an
algorithm to realize the filter (like the Direct Forms or the State-Space). Then
it is transformed in finite-precision code to be executed on a specific target. The
bound of the output error (due to the finite-precision arithmetic) will be then
deduced and proved.

References

1. Akbarpour, B., Tahar, S.: Error analysis of digital filters using hol theorem proving.
Journal of Applied Logic 5(4) (2007) 651–666 from the 4th International Workshop
on Computational Models of Scientific Reasoning and Applications.

2. Hilaire, T., Lopez, B.: Reliable implementation of linear filters with fixed-point
arithmetic. In: Proc. IEEE Workshop on Signal Processing Systems (SiPS). (2013)

3. Siddique, U., Mahmoud, M.Y., Tahar, S.: Formal Analysis of Discrete-Time Sys-
tems using z-Transform. Journal of Applied Logic (2018) 1–32 Elsevier.

4. Akbarpour, B., Tahar, S., Dekdouk, A.: Formalization of fixed-point arithmetic in
HOL. Formal Methods in System Design 27(1) (Sep 2005) 173–200

5. Park, J., Pajic, M., Lee, I., Sokolsky, O. In: Scalable Verification of Linear Con-
troller Software. Springer Berlin (2016) 662–679

6. Park, J., Pajic, M., Sokolsky, O., Lee, I. In: Automatic Verification of Finite Pre-
cision Implementations of Linear Controllers. Springer Berlin Heidelberg, Berlin,
Heidelberg (2017) 153–169

7. Feret, J.: Static Analysis of Digital Filters. In Schmidt, D., ed.: the 13th Euro-
pean Symposium on Programming - ESOP 2004. Volume 2986 of Lecture Notes in
Computer Science., Barcelona, Spain, Springer (March 2004) 33–48

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Texts in Theoretical Computer Science. Springer (2004)

9. The Coq Development Team: The Coq Proof Assistant Reference Manual. (2017)
10. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: A user-friendly library of real

analysis for Coq. Mathematics in Computer Science 9(1) (2015) 41–62
11. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-time Signal Processing (2nd

Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1999)
12. Siddique, U., Mahmoud, M.Y., Tahar, S. In: On the Formalization of z-Transform

in HOL. Springer International Publishing (2014) 483–498
13. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux,

S., Mahboubi, A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau, L., Solovyev,
A., Tassi, E., Théry, L.: A Machine-Checked Proof of the Odd Order Theorem. In
Blazy, S., Paulin, C., Pichardie, D., eds.: 4th Conference on Interactive Theorem
Proving. Volume 7998 of LNCS., France, Springer (2013) 163–179

14. Fettweiss, A.: Wave digital filters: Theory and practice. Proc. of the IEEE 74(2)
(1986)

15. Middleton, R., Goodwin, G.: Digital Control and Estimation, a unified approach.
Prentice-Hall International Editions (1990)

16. Li, G., Wan, C., Bi, G.: An improved ρ-DFIIt structure for digital filters with
minimum roundoff noise. IEEE Trans. on Circuits and Systems 52(4) (April 2005)
199–203

17. Hanselmann, H.: Implementation of digital controllers - a survey. Automatica
23(1) (January 1987) 7–32

18. Gevers, M., Li, G.: Parametrizations in Control, Estimation and Filtering Probems.
Springer-Verlag (1993)

19. Balakrishnan, V., Boyd, S.: On computing the worst-case peak gain of linear
systems. Systems & Control Letters 19 (1992) 265–269

20. Boyd, S.P., Doyle, J.: Comparison of peak and RMS gains for discrete-time systems.
Syst. Control Lett. 9(1) (June 1987) 1–6

21. Kailath, T.: Linear Systems. Prentice-Hall (1980)
22. Hilaire, T., Chevrel, P., Whidborne, J.: A unifying framework for finite wordlength

realizations. IEEE Trans. on Circuits and Systems 8(54) (August 2007) 1765–1774
23. Boldo, S., Melquiond, G.: Computer Arithmetic and Formal Proofs. ISTE Press -

Elsevier (December 2017)

	A Coq formalization of digital filters

