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Abstract: Practically, some intermediary realizations are used in order to simu-
late, numerically, dynamic systems. One of the most popular is the state-space
realization. It reveals to be very useful to study the impact of Finite Word Length
implementation, especially in the case of embedded controller. Numerous works
concerned the design of the ”best” realization concerning parameterisation, nu-
merical noise minimisation or saving computation. This paper points out however
that a standard state-space realization is too basic to take into account some
interesting realizations. On the contrary, it highlights that implicit state-space
realizations allows a more direct link with the macroscopic computations to be
performed. It is necessary to describe some popular algorithms simulating LTI
systems. Moreover, such a representation has the important property to unify
different ways of research considering differently the possibilities offered by using
the shift, δ or γ operators.
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1. INTRODUCTION

Finite Word Length (FWL) implementation leads
to deterioration of dynamic systems used for
filtering or control. The degradation introduced
(quantification of the coefficients, roundoff errors
in numerical computations) may be formalised
as parametric errors and numerical noises. It de-
pends on the realization used. That is the reason
why the filtering and control community have
made extensive works in order to find the ”best”
realization.
What a ”best” realization means in this context
may vary. Hence, some works try to save compu-

tations while others attempt to reduce the para-
metric sensitivity or the roundoff noise gain. Some
constraints may also be taken into account such as
legibility of the resulting algorithm or antiwindup
properties.

In modern automotive industry, hundreds of con-
trollers are digitally implemented on embedded
processors in a single car. Numerous applications,
from engine control to vehicule dynamics, require
precise and performant controllers. Most of them,
for cost reason, are realized in fixed-point proces-
sors (in opposition to floating-point processors),
and require a specific attention to avoid numerical



difficulties.
Even for more advanced processors, there is a real
need for methodology in order to manage better
the compromise between the on-line computa-
tional efforts (number of operations, memory size)
and the quality of the results. Such a methodology
concerns not only the controller designer but also
the engineers working on the real-time software
developpement.

State-space realizations are indeed a powerful tool
in order to support such a methodology. The
state vector gathers the variable to be stored
at each computation step (between two sampling
time). This paper shows however that the stan-
dard state-space realization can not handle im-
portant points on implementation and proposes
a generalised form. It focuses on the problem of
parameterization and macroscopic computational
representation.

This paper first presents a brief state of the art
in optimal FWL controller implementation. Then
section 3 highlights the interest of the implicit
state-space representation. Using this formalism,
realizations with δ and γ operator, state-estimate
feedback controller, cascade and direct form I
realizations are reformulated in section 4. Some
concluding remarks are given in section 5.

2. NOTATION AND PROBLEM
FORMULATION

Although often considered (Middleton and Good-
win, 1990), transfer function based representa-
tions are not considered in the following as they
can be associated in a one to one manner to a
state space representation using the companion
form. Let us consider the discrete time LTI sys-
tem S defined by one of its realization R =
(Aq, Bq, Cq, Dq), and the input/output equations
are :

S
{

qXk = AqXk + BqUk

Yk = CqXk + DqUk
(1)

where the q-operator is the shift-operator defined
by

qXk , Xk+1 (2)

The associed transfer fonction is

HS(z) =
Y

U
= Cq(zI −Aq)−1Bq + Dq (3)

Contrary to Gevers and Li (1993), realization,
representation and parametrization will have dif-
ferent meaning here. The term parametrization
will designate all the coefficients involved in the
calculations (ie all the reprensentative coefficients,
different from 0 or ±1, in the matrix of the realiza-
tion). For example, two realizations derived from
the transfer fonction, like Direct Form I and Direct
Form II can share the same parametrization (the

same parametric coefficients) but have different
realizations (Direct Form I is not minimal, see
4.4).

Indeed, all the realizations of the form

RT = (T−1AqT, T−1Bq, CqT,Dq) (4)

where T is a non-singular matrix, are equivalent in
infinite precision (they represent the same system,
they have the same input/output relationship) but
not any more in finite-precision. The coefficients
of the state-space matrices are then numerically
quantified as well as the computations.

The degradation resulting from the quantization
depends on the realization used. This is also the
case for the number of computations to be per-
formed during one sampling time and the memory
required.

The two FWL effects (roundoff noise and coeffi-
cients approximation) have been widely studied
in digital signal processing and in control de-
sign. Some works concern the problem of finding,
starting from a given state-space realization (see
eq. 1), the change of coordinate leading to the
optimal realization according to different crite-
rion : parametric sensibility (in order to find the
closest transfer function once the coefficients are
quantized), roundoff noise gain, sparsity, stabil-
ity, ... (Istepanian and Whidborne, 2001; Gevers
and Li, 1993; Rotea and Williamson, 1995; Wu
et al., 2000a; Wu et al., 2001; Tavşanoğlu and
Thiele, 1984; Istepanian et al., 1996). All real-
izations considered then are the same dimension,
most often considered as minimal.

Other works analyse the interest of using alterna-
tive discrete-time operators (eg δ or γ-operator)
for FWL implementation (Wu et al., 2000b), such
as δ or γ-operators defined by

δ ,
q − 1

∆
, γ ,

2
∆

q − 1
q + 1

(5)

where ∆ is a positive real constant 1 .
With these operators, state-space systems are{

δXk = AδXk + BδUk

Yk = CδXk + DδUk
(6){

γXk = AγXk + BγUk

Yk = CγXk + DγUk
(7)

It can be easily shown that the realization (1), (6)
and (7) are equivalent in infinite precision if

Aδ =
A− I

∆
, Bδ =

B

∆
, Cδ = C, Dδ = D (8)

1 in Middleton and Goodwin’s (1990) definition, ∆ cor-
responds to the sampling period, but this contraint is

removed by Gevers and Li (1993)



and

Aγ =
2
∆

(I + Aq)
−1 (Aq − I)

Bγ =
2
∆

(I + Aq)
−1

Bq, Cγ = Cq

Dγ = Dq − Cq (I + Aq)
−1

Bq

(9)

The δ-operator has shown numerical advantages
for FWL implementation (Gevers and Li, 1993;
Wu et al., 2000a), and section 4.1 shows that
implementation using δ-operator make use of
more variables than implementation using shift-
operator. This points that a non minimal realiza-
tion should not be a priori rejected when looking
for an optimal FWL realization. A larger class
of equivalence including non-minimal realization
could be defined using the Inclusion Principle
(Stanković and Šiljak, 2001).

Some related works are concerned with the nu-
merical implementation aspects (residue feedback
(Williamson, 1986), quantization after or before
multiplication (Rotea and Williamson, 1995)),
with conversion from floating-point to fixed-point
algorithms for DSP processors (Keding et al.,
1998; Kum et al., 2000) and with evaluation of
the accuracy of fixed-point algorithms (Menard
and Sentieys, 2002).
As long as it is possible to emulate in software
every calculation at arbitrary fixed precision, it
also exists, for a given parametrization, an infi-
nite choice of software technics. For example, the
same transfer function could be implemented with
the same realization but with differents software
technics, like the same fixed-point representation
for each coefficient with truncation, fixed-point
representation with roundoff, or fixed-point repre-
sentation with residue feedback. They don’t have
neither the same accuracy nor the same execution
time, but the same realization.
This gives an extra degree of freedom for the
implementation, but it is not used in the search
for an optimal FWL controller relatively to a
certain measure. Most of the time, a unique im-
plementation is implicitly associated with a given
parametrization.
Rotea and Williamson (1995) propose a uni-
fied representation of FWL implementation : the
structure of their model is independent of the
specific implementation, and they can formalize
only some particular FWL implementation, like
quantization before and after multiplication, and
error feedback. But this is not enough to represent
other existent implementations.
This points a paradox : some realizations (for
example, those using γ-operator) can not be rea-
listically implemented, whereas some implemen-
tations cannot be associated with classical state-
space realizations. The important point is gener-

ally to make closer system realization and control
algorithms.

3. IMPLICIT STATE-SPACE REALIZATIONS

This section proposes to use implicit state-space
realizations as a unifying framework to allow
a more detailled description of the control or
filtering algorithms. Such an implicit realization
for linear system can be written as :

E

(
Zk+1

Yk

)
=
(

A B
C D

)(
Zk

Uk

)
(10)

For a special case where E =
(

E11 0
E21 I

)
, the

system is said to be singular (and cannot be easily
implemented) iff E11 is singular (Dai, 1989).

The specialized form (11) of the realization (10)
will be used to make explicit the parametriza-
tion and the distinction between intermediate and
stored variables.

The model of the proposed unifying framework for
FWL implementations of LTI systems is : J 0 0

−K E 0
−L 0 I

Tk+1

Xk+1

Yk

 =

0 M N
0 P Q
0 R S

Tk

Xk

Uk


(11)

where

• the J matrix is lower triangular with 1 on the
diagonal 

1 0 . . . . . . 0

?
. . . 0

...
... ? 1 0

...
... ?

. . . 0
? . . . . . . ? 1


(12)

• E is non-singular, and, most often to be
taken equal to identity

• Tk+1 is the intermediate variable in the cal-
culations of step k (the column of 0 in the
second matrix shows that Tk is not used for
the calculation at step k : that defines the
concept of intermediate variables)

• Xk+1 is the stored state-vector (it is effec-
tively stored from one step to the next)

Tk+1 and Xk+1 form the state-vector : Xk+1 is
stored from one step to the next, and Tk+1 is used
in the calculations.

It is implicitly considered throught the paper that
the computations associated to realization (11)
are ordered from top to bottom. So the following
algorithm is associated in a one to one manner to
(11) :



[1] J.Tk+1 = M.Xk + N.Uk :
calculation of the intermediate variables. J is
lower triangular, so T

(0)
k+1 is first calculated,

and then T
(1)
k+1 using T

(0)
k+1 and so on ...

[2] Xk+1 = K.Tk+1 + P.Xk + Q.Uk

[3] Yk = L.Tk+1 + R.Xk + S.Uk

J and E beeing non-singular, with an infinite pre-
cision, equation (11) is equivalent to the classical
state-space form :(

Xk+1

Yk

)
=
(

KJ−1M + P KJ−1N + Q

LJ−1M + R LJ−1N + S

)(
Xk

Uk

)
Indeed, the parametrization is changed in this case
(as well as the number of state variables).

4. ILLUSTRATING EXAMPLES

4.1 δ-operator

As seen in section 2, the δ-operator is an alterna-
tive discrete-time operator promoted by Middle-
ton and Goodwin (1990). This operator proposes
a theorical interesting unified formulation of con-
tinuous and discrete time filter (when Te → 0)
and has also shown numerical advantages for
FWL implementation(Gevers and Li, 1993; Wu et
al., 2000a). According to equations (5) and (6),
the algorithm to implement a δ-realization is the
following :

[1] Tk+1 = AδXk + BδUk

[2] Xk+1 = Xk + ∆Tk+1

[3] Yk = CδXk + DδUk

where T is an intermediate vector used for the cal-
culation. A δ-realization can be written using the
shift-operator with the implicit proposed state-
space form : I 0 0

−∆I I 0
0 0 I

Tk+1

Xk+1

Yk

 =

0 Aδ Bδ

0 I 0
0 Cδ Dδ

Tk

Xk

Uk


It is important to notice that (1) and (6) are
equivalent, but the parametrization is completely
different. There is no singular matrix T to change
the base of the realization in the explicit form
to change from (1) to (6), but the optimal δ-
realization has better closed-loop stability margin
than the optimal q-realization in FWL implemen-
tation (Wu et al., 2000b). It is due to a non
minimal realization and a different organization
of the computations.

4.2 the implicit γ-operator

This discrete-time operator was introduced by
Gevers and Li (1993) (this operator also exists in
a generalized form, called the π-operator (Back et

al., 1996)).
While the inverse δ-operator geometrically rep-
resents an optimal first order explicit numerical
integrator, the inverse γ-operator represents an
optimal first order implicit method : the trape-
zoidal integrator (Rostgaard et al., 1993). This
explains the important role played by γ-operator
in the unification of continuous and discrete time
systems (Rabah and Bergeon, 2001).
However, a state-space system like (7) could not
be directly implemented due to the implicit nature
of γ.

Rostgaard et al. (1993) propose an iterative al-
gorithm to implement γ-based state-space, but
this implementation is rather expensive computa-
tionally. Świder (1998) also proposes another
method to implement it, without iterations. Its
algorithm requires a state-space in canonical form
and exploits some numerical particularities of(
I − ∆

2 Aγ

)−1
.

4.3 Cascade realization

A method that is widely used to implement high-
order controller consists to consider the whole
controller like an interconnection of multiple sub-
sytems (such that the output of one subsystem is
the input of another). Each subsystem is a low
order controller (first or second degree controllers
in most cases, and each one is implemented in an
usual form (direct form II, for example).
Let’s consider two systems S1 and S2 with realiza-
tions (A1, B1, C1, D1) and (A2, B2, C2, D2) , and
with correct dimensions :

S1

{
X

(1)
k+1 = A1X

(1)
k + B1U

(1)
k

Y
(1)
k = C1X

(1)
k + D1U

(1)
k

S2

{
X

(2)
k+1 = A2X

(2)
k + B2U

(2)
k

Y
(2)
k = C2X

(2)
k + D2U

(2)
k

(13)

A realization of S, the serie connection of S1 and
S2 is R = (A,B,C, D) :

A =
(

A1 0
B2C1 A2

)
B =

(
B1

B2D1

)
C =

(
D2C1 C2

)
D = D2D1

(14)

Pratically, the computation performed do not
correspond to (14), in that the ouput of S1 is
computed first to be used then as input for S2.
The following implicit state-space form exhibits
the right parametrization and computations :




I 0 0(
0

−B2

)
I 0

−D2 0 I




Tk+1(
X

(1)
k+1

X
(2)
k+1

)
Y

(2)
k

 =


0
(
C1 0

)
D1

0
(

A1 0
0 A2

) (
B1

0

)
0
(
0 C2

)
0




Tk(
X

(1)
k

X
(2)
k

)
U

(1)
k

 (15)

With Tk+1 = Y
(1)
k = U

(2)
k .

The second realization required the use of inter-
mediary variables but has the advantage to permit
modular implementation (Williamson, 1992).

4.4 Direct Form I

Considering a transfer fonction

H(z) =
b0z

n + · · ·+ bn−1z + bn

a0zn + a1zn−1 + · · ·+ an
(16)

with a0 6= 0. The easiest and most natural way to
implement it is to write(

n∑
i=0

aiq
−i

)
Yk =

(
n∑

i=0

biq
−i

)
Uk (17)

This leads to the recurent equation

Yk =
1
a0

(
n∑

i=0

biUk−i −
n∑

i=1

aiYk−i

)
(18)

This form is not minimal and the associated
realization is order 2n with :

0 1

1
. . . 0
. . . . . .

...
1 0 0

b1

a0
· · · · · · bn

a0
−a1

a0
· · · · · · −an

a0

b0

a0
1 0 0

. . . . . .
...

1 0 0
b1

a0
· · · · · · bn

a0
−a1

a0
· · · · · · −an

a0

b0

a0


The calculation of Yk appears two times, because
it is also stored in the state-vector. In the real
implemented algorithm however, it appears only
once, and the coefficients (bi)06i6n are used, in-

stead of
(

bi

a0

)
06i6n

.

Taking this into account is not a problem with the
implicit state-space form (11) with :

J = (a0) , L = (1) , N = (b0) , S = (0)
K =

(
0 · · · · · · 0 1 0 · · · 0

)>
M =

(
b1 · · · · · · bn −a1 · · · · · · −an

)

P =



0

1
. . .
. . . . . .

1 0
0

1
. . .
. . . . . .

1 0


Q =

(
1 0 · · · 0 0 · · · · · · 0

)>
R =

(
0 · · · · · · 0 0 · · · · · · 0

)

(19)

In a DSP 2 , the computation of the scalar product
Tk+1 could be process in the Multiply Accumulate
Unit with an increase precision (for example, 40
bits instead of 16) (Roger and Aubenas, 2001).
Exhibit the calculations permits to have different
wordlengths in the algorithm, and to take account
software and hardware improvements.

4.5 Observer-State-feedback Form

Let us now consider the following state-feedback
control :{

X̂k+1 = AX̂k + BUk + L(Yk − CX̂k)
uk = −KX̂k

(20)

This system is implemented by :

[1] Tk+1 = −KX̂k

[2] X̂k+1 = (A− LC)X̂k + BTk+1 + LYk

[3] Uk = Tk+1

It can be easily represented without changing the
parametrization thanks to the implicit state-space
representation : I 0 0
−B I 0
−I 0 I

Tk+1

X̂k+1

Uk

 =

0 −K 0
0 A− LC L
0 0 0

Tk

X̂k

Yk


Indeed, the realization (20) is equivalent, in in-
finite precision, to (A − BK − LC, L,−K, 0). It
has however many appealing properties for im-
plementation (eg antiwindup, meaningful state-
variables).

5. CONCLUSION

This article highlights the interest of the implicit
state-space representation in the context of FWL
implementation problems. With this type of repre-
sentation, no more δ or γ-operators are needed to
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introduce a relevant parametrization for FWL im-
plementation. Moreover, the link with the macro-
scopic computations to be performed are made
more explicit and the gap between the software
FWL implementation and its formal description
is reduced. As a perspective, promising researches
will consist to re-examine previous works on opti-
mal realizations (relating to parametric sensitivity
or FWL stability measure, etc...) using the im-
plicit state-space form. The roundoff noises and
their propagation will also be reconsidered in this
framework.
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