
LOW PARAMETRIC SENSITIVITY
REALIZATION DESIGN FOR FWL

IMPLEMENTATION OF MIMO CONTROLLERS
: THEORY AND APPLICATION TO THE

ACTIVE CONTROL OF VEHICLE
LONGITUDINAL OSCILLATIONS

T. Hilaire ∗,∗∗∗ P. Chevrel ∗,∗∗ J.P. Clauzel ∗∗∗

∗ IRCCyN, UMR CNRS 6597, Nantes, FRANCE
∗∗ Ecole des Mines de Nantes, Nantes, FRANCE
∗∗∗ PSA Peugeot Citroën, La Garenne, FRANCE

Abstract: The implementation of a controller in a Finite Word Length (FWL)
context may lead to a deterioration of the global performance, due to parametric
errors (quantification of coefficients) and numerical noises (roundoff noises).
This deterioration depends on the choise of the realization used to numerically
implement the controller. In previous papers, the authors have introduced a
new representation allowing to unify different realizations including among others
those using q or δ-operators. In this paper, the parametric sensitivity measure is
generalized in the MIMO case and used with a specific realization : the Observer-
State-Feedback realization. Such a realization is not unique and one problem
consists in finding an optimal realization according to that measure. Looking for
such a structure is applied on a pratical example : the active control of vehicle
longitudinal oscillations.
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1. INTRODUCTION

The digital implementation of controllers or fil-
ters in a numerical processor is not an obvious
task, specially in the Finite Word Length (FWL)
case. Since the processor cannot compute with
an infinite precision, the implementation leads to
a degradation of the input/output relationship.
This deterioration has two separate origins, the
roundoff errors in the numerical computations and
the quantization of the coefficients involved, and
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can be formalized in numerical noises and para-
metric errors.
Since it exists various equivalent numerical re-
alizations of a controller or a filter, and since
these realizations are no more equivalent in finite
precision, the problem of FWL implementation
consists in finding optimal ones with regards to
deterioration criteria. Usually, some classical re-
alizations, like with q or δ-operator, direct form
I and II, or observer state feedback forms, are
studied. In a previous paper (Hilaire et al., 2005b),
the authors have proposed a new framework, uni-
fying different parametrizations possible for im-
plementation. With a specific implicit state-space
representation, it encompasses usual realizations



and many others unexplored.
The different analysis tools may be used to deter-
mine how the realization will be altered during the
FWL process : the norm of the parametric sensi-
tivity (Gevers and Li, 1993), the pole sensitivity
stability related measure (Chen et al., 2002), the
amount of computations, .... Those measures are
based on how sensitive the transfer function, or
some eigenvalues, are to the quantization process.
This paper first exhibits the way to use an im-
plicit state-space realization (first presented in
(Hilaire et al., 2005b)) in order to encapsulate, in
a single framework directly related to implemen-
tation, various parametrizations usually studied
separately. Section 3 generalizes the use of the
parametric sensitivity measure to this implicit
description in the MIMO case, while Section 4
considers the optimal design problem, according
to this measures. Finally section 5 presents the re-
sults obtained on different observer-state-feedback
forms, applied to a real system before concluding
in section 6.

2. IMPLICIT STATE-SPACE FRAMEWORK

Hilaire et al. (2005b) highlights the interest of the
implicit state-space representation in the context
of FWL implementation problems and proposes to
use a specialized form still macroscopic but more
directly connected to the in-line calculations to be
performed. Equation (1) recalls this form to make
explicit the parametrization and the intermediate
variables used.

 J 0 0
−K I 0
−L 0 I

Tk+1

Xk+1

Yk

 =

0 M N
0 P Q
0 R S

Tk

Xk

Uk

 (1)

where

• the matrix J is lower triangular with 1 on the
diagonal

• Tk+1 is the intermediate variable in the cal-
culations of step k (the column of 0 in the
second matrix shows that Tk is not used for
the calculation at step k : that characterizes
the concept of intermediate variables)

• Xk+1 is the stored state-vector (Xk is effec-
tively stored from one step to the next, in
order to compute Xk+1 at step k)

Tk+1 and Xk+1 form the state-vector : Xk+1 is
stored from one step to the next, while Tk+1 is
computed and used inside one time step.

It is implicitly considered throught the paper that
the computations associated to the realization (1)
are ordered from top to bottom. So the following
algorithm is associated in a one to one manner to
(1) :

[1] J.Tk+1 = M.Xk + N.Uk :
calculation of the intermediate variables. J is
lower triangular, so T

(0)
k+1 is first calculated,

and then T
(1)
k+1 using T

(0)
k+1 and so on ...

(There’s no need to compute J−1)
[2] Xk+1 = K.Tk+1 + P.Xk + Q.Uk

[3] Yk = L.Tk+1 + R.Xk + S.Uk

J is nonsingular, so equation (1) is equivalent in
infinite precision to the classical state-space formTk+1

Xk+1

Yk

 =

 0 J−1M J−1N
0 A B
0 C D

Tk

Xk

Uk

 (2)

A = KJ−1M + P (3)

B = KJ−1N + Q (4)

C = LJ−1M + R (5)

D = LJ−1N + S (6)

However, (2) corresponds to a different parametri-
zation than the one in (1).

The transfer function considered may be then
defined by

H(z) = C(zIn −A)−1B + D (7)

In the following, a realization will be defined
in the implicit form by its parameters used for
the internal description. It can be written in a
compact form with parameter Z, where Z ∈ Rk×l

is defined by

Z ,

−J M N
K P Q
L R S

 (8)

A structuration will be a subset of realizations
with a special structure : some coefficients or
some dimensions of the realization matrices are
then fixed a priori. For example, a δ-realization
can be written using the shift-operator with the
implicit proposed state-space form (see (Hilaire et
al., 2005b)) : I 0 0

−∆I I 0
0 0 I

Tk+1

Xk+1

Yk

=

0 Aδ Bδ

0 I 0
0 Cδ Dδ

Tk

Xk

Uk

 (9)

The similarity transform

Z = T1Z0T2 (10)

with

T1 =

U
T−1

Ip

 , T2 =

V
T

Im

 (11)

allows, in the general case, to explore a set of
equivalent structured realizations.



3. THE INPUT/OUTPUT SENSITIVITY
MEASURE IN THE MIMO CASE

In (Hilaire et al., 2005a), the sensitivity mea-
sure, derived from the Gevers and Li (1993) L2-
measure, is defined for the SISO case and applied
to the implicit state-space formalism :

MW
L2

,
∑

D

X∈{J,K,L,M,N,P,Q,R,S}

∥∥∥∥∥∂H̃(z)
∂X

×WX

∥∥∥∥∥
2

2

(12)

where

• × denotes the Schur product
• WX are the weighting matrices associated

with the realization matrices (J ,K,L,M ,
N ,P ,Q,R,S). They allow to only take into
account the coefficients that they will have to
be quantized during the implementation pro-
cess (Li, 1998), and do not take in considera-
tion the sensitivity of exactly implemented
coefficients (like 0, ±1 or power of 2). They
are defined by

(WX)i,j =

{
0 if Xi,j is exactly implemented
1 if not

• H̃(z) , H(z)−D = C(zI −A)−1B

It is preferable to consider ∂H̃(z)
∂X instead

of ∂H(z)
∂X , because ∂H̃(z)

∂X = ∂H(z)
∂X − ∂D

∂X is
strictly proper whatever X and have always a
L2-norm (it is strictly equivalent to compute
∂H(z)

∂X and do not consider the constant term
in the evaluation of the L2-norm). Moreover,
∂D
∂X is independent of the state-space coordi-
nates and have not to be considered here.

One way to expand the overall L2-sensitivity
measure for the implicit state-space in the MIMO
case is to consider each sub-transfer function and
apply equation (12) to each of them, and then use
the L2-norm property (the square of the norm is
the sum of the square of each sub-terms). Another
way consists in considering the global impact of
each coefficient on the transfer matrix H(z) and
use the definition of the derivative of a matrix with
respect to another matrix.

Let’s denote δH̃
δX the matrix of the L2-norm of

the sensitivity of the transfer function H(z) with
respect to each coefficients Xi,j :(

δH̃

δX

)
i,j

,

∥∥∥∥∥ ∂H̃

∂Xi,j

∥∥∥∥∥
2

(13)

It allows to evaluate the overall impact of each
coefficient, and only take into account coefficients
we need to.
Due to the L2-norm property, we have∥∥∥∥∥δH̃

δX

∥∥∥∥∥
F

=

∥∥∥∥∥∂H̃

∂X

∥∥∥∥∥
2

(14)

where ‖.‖F is the Frobenius norm.
So the sensitivity function in MIMO could be
expressed as :

MW
L2

=
∑

D

X∈{J,K,L,M,N,P,Q,R,S}

∥∥∥∥∥δH̃

δX
×WX

∥∥∥∥∥
2

F

(15)

or

MW
L2

=

∥∥∥∥∥δH̃

δZ
×WZ

∥∥∥∥∥
2

F

(16)

The three following propositions are necessary to
compute the sensitivity function MW

L2
:

Lemma 1. Let consider G and H two matrices (or
transfer function) in Cm×p and Cq×n and X ∈
Rp×q. G and H are supposed to be independent
with respect to X. Then

∂(GXH)
∂X

= (Ip ⊗G)
∂X

∂X
(Iq ⊗H) (17)

= G ~ H (18)

and
∂(GX−1H)

∂X
= −(GX−1) ~ (X−1H) (19)

where the ~ is defined by

G ~ H , Vec(G).[Vec(H>)]> (20)

and Vec is the usual operator that transforms
matrices into column vectors, ⊗ is the Kronecker
product.

Proof:
The demonstration is omitted for lack of place.
See (Sohl, 2004) or (Neudecker, 1969) for more
elements on matrix derivation.

Proposition 1. The sensitivity transfer function of
H(z) with respect to each matrix of the implicit
state-space realization are given by

∂H

∂Z
=
(
H3 H1 Ip

)
~

H4

H2

Im

 (21)

∂D

∂Z
=
(
LJ−1 0 Ip

)
~

J−1N
0

Im

 (22)

with

H1(z) = C(zIn −A)−1 (23)

H2(z) = (zIn −A)−1B (24)

H3(z) = H1(z)KJ−1 + LJ−1 (25)

H4(z) = J−1MH2(z) + J−1N (26)

H1 and H2 (that are identical to sensitivity’s
functions G and F found in (Gevers and Li,
1993)) come from the contribution of Xk in H,



whereas H3 and H4 comes from the contribution
of Tk in H.

Proof:
The demonstration is omitted for lack of place,
but comes from lemma 1, apply on (7).

Remark: the SISO case, due to the definition of ~,
leads to same results as in (Hilaire et al., 2005a),
but expressed in a compact form, thanks to Z.

Then, MLW
2

is computed by applying proposition
2 to equations (21) and (22).

Proposition 2. Let’s consider a matrix X, and
three transfer functions H, A and B such that

∂H

∂X
= A ~ B (27)

Then, we have(
δH

δX

)
i,j

= ‖A•,iBj,•‖2 (28)

4. DESIGN PROBLEM

Since the parametric sensitivity measure could
be evaluated for various equivalent realizations,
it could be interesting to find realizations with
a maximum tolerance to FWL quantization, i.e.
realizations with lowest parametric sensitivity
measure.
Let RH be the set of realizations R with H as
transfer function. The optimal design problem
consists in finding the best realizationRopt for the
transfer function H according to a measure M (it
can be the parametric sensitivity measure or any
other measure, like the pole-sensitivity stability
related measure)

Ropt = arg min
R∈RH

M(R) (29)

But this problem is a very difficult one, due to the
size of RH .
A sub-optimal solution of this problem can be
found by restricting RH to a specific subset, like
those defined from a special structuration via a
similarity transformation (see (10)).

Then, the parametric sensitivity measure of a rea-
lization Z can be computed from the parametric
sensitivity measure of the initial realization Z0

thanks to the following proposition

Proposition 3.

∂H

∂Z

∣∣∣∣
Z

=
(
T −>1 ⊗ Ip

) ∂H

∂Z

∣∣∣∣
Z0

(
T −>2 ⊗ Im

)

5. NUMERICAL EXAMPLE

The example considered shows how the parame-
tric sensitivity may vary from realizations to an-

others : state-space and observer-based realiza-
tions are studied here.
This example is an active control of longitudinal
oscillations studied in (Lefebvre et al., 2001) :
one significant aspect of vehicle driveability is the
attenuation of the first torsional mode (resonance
in the elastic parts) which produces unpleasant
(0 to 10 Hz) longitudinal oscillations of the car,
known as shuffle. They can be reduced by means
of a controller acting on the engine torque.
The model of the powertrain was modeled in
continuous-time form, and a continuous-time H∞
optimal controller was designed (Lefebvre et al.,
2003). The discretized model P (z) is given by
equations (32) and (33), and a discrete-time rea-
lization of the controller is given by (33) and
(34) : it corresponds to an internally balanced
realization.
Remark : all the matrices or results are computed
with double floating-point precision, but only 3
significant digital are shown.

Since it exists various ways to implement such
a controller, this paper focuses only on classi-
cal state-space realizations (shift-operator) and
realizations with Observer-State-Feedback forms
(realizations with δ-operator, that have proved
their numerical efficiency, have been studied in
(Gevers and Li, 1993; Hilaire et al., 2005a)).

Classical state-space realizations are formalized
in the implicit form by considering no tempo-
rary variables Tk. The sensitivities of the ini-
tial realization (equations (34) and (33)) and the
companion one are summarized in the following
table. The Adaptive Simulated Annealing (see
(Ingber, 1996)) algorithm, a global optimization
one, know for its efficiency in the context of con-
trol, has been adopted here to search for the
optimal realization, according to the sensitivity
measure. For this structuration, the similarity
transformation used is

T1 =

Iq

T−1

Ip

 , T2 =

Iq

T
Im

 (30)

This results are coherent with existing ones :

realizationM MW
L2

companion form 1, 78e+14

balanced form 81.44

optimal form 5.99

the canonical form minimizes the execution time,
but is very sensitive to the quantization of its
parameters. The internally balanced form is quite
well numerically conditioned. The optimization
process carries on 100 parameters (the coefficients
of the matrix T in T1 and T2) and took about 4
hours on a desktop computer.

This example was also implemented with a state-
feedback-observer structure, particularly because



it allows an enrichment of the observer model with
a physical meaning but also because these states
estimate the states of the physical system. Then,
it improves the readability of the signals, and the
states initialization of the controller is based on
the physical states of the system, so the starting
and the commutations to one controller to another
(when the gear ratio changes for example) is facili-
tated. The Observer-State-Feedback is illustrated
by equation (31)

X̂k+1 = ApX̂k + BpUk

+Kf (Yk − CpX̂k)
Uk = −KcX̂k + Q(Yk − CX̂k)

(31)

The transformation from the state-space form
to the Observer-State-Feedback form required to
solve a generalized Ricatti equation (Alazard and
Apkarian, 1999). The controller poles must be
classified between three categories, which are the
observation gain, the filter gain and the Youla
parameter (static here) : the unobservable pole
must be assigned to the estimation gain, the un-
controllable poles must be assigned to the state-
feedback gain, and the complex conjugate poles
must not be separated (to preserve the gain real).
Then, for the other poles, the fast ones are usually
(but not necessary) assigned to the estimation
gain, and those closed to the physical system to
the state-feedback gain. That repartition deter-
mines the parameters Kf , Kc and Q.

According to that rules, it is possible to nume-
rically implement equation (31) in various ways,
depending on

• the choice of the partition of the poles
• the form of the computation : one way could

be to keep (Ap −KfCp), Bp, (Kc + QCp), Q
and Kf as parameters (i.e. coefficients really
implemented in the algorithm). But, it is also
possible to choose Ap, Bp, Cp, Kc, Kf and Q
as parameters.

Equations (35) and (36) represents the two last
possibilities embedded in the Implicit State-Space
formalism.

The optimal design consists here in a discrete opti-
mization : all the possible partitions are examined.
With 20 poles, it exists 184756 partitions, but
only 140 ones are in accordance with the previous
rules. The following figure exhibits the sensitivity
measure (log10

(
MW

L2

)
more precisely) of each one,

on the first observer-state-feedback form (equa-
tion (35)) : the measure varies from 1.358e+2
to 3.797e+8. The second observer-state-feedback
form (equation (36)) leads to results with same
order of magnitude (from 1.423e+2 to 3.798e+8).

This example shows that it exists a large diversity
of numerical conditioning in the different poten-
tial observer-state-feedback realizations, and they
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Fig. 1. Parametric sensitivity of each partition
examined

have to be taken in consideration in the choice of
the poles repartition. Moreover, among the usual
partitions, some of them present low sensitivity,
but some present very bad sensitivity. This crite-
rion must be taken into consideration during the
implementation process.

The two observer-state-feedback forms presented
have coherent sensitivity : the best partitions for
the first form are also the best for the second
form. The first form however uses less parame-
ters, whereas in the second one, the parameters
Ap, Bp and Cp could be considered as exactly
implemented when the quantization is lower than
the uncertainties on the plant coefficients. Only
parameters Kc, Kf and Q are considered to be
approximately implemented : it induces a lower
sensitivity.

6. CONCLUSION

The implicit state-space framework allows the
macroscopic description of various control algo-
rithms to be implemented. It encapsulates all
classical state-space realizations using shift or δ-
operators, but also observer-state-feedback ones.
This paper has shown how optimisation tool,
such as Adaptative Simulated Annealing may be
used to find optimal realizations according to
the parametric sensitivity measure, well suited
for FWL implementation. Moreover, the observer-
state-space realizations have their own interests
and it has been shown that the degree of freedom
associated to such a realization (observer dynam-
ics versus state feedback one) may be pertinently
used to obtain, by discrete optimization, a low
sensitivity measure.
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Ap=


+8.384e−1 +1.600e−1 −3.294e−1 −4.833e−2 0 0 0 0 0 0
−3.927e−1 +7.144e−1 +5.040e−2 −8.245e−3 0 0 0 0 0 0
−1.566e−1 −6.105e−1 +3.683e−2 +4.195e−1 0 0 0 0 0 0
−1.444e−1 +1.772e−1 −6.798e−1 +6.508e−1 0 0 0 0 0 0
+1.929e−1 +1.512e−1 +4.030e−1 +3.898e−1 +9.773e−1 +1.037e−2 −6.170e−2 0 0 0
+2.768e−4 +2.170e−4 +5.783e−4 +5.594e−4 +2.837e−3 +9.971e−1 +1.698e−2 0 0 0
+3.238e−2 +2.539e−2 +6.767e−2 +6.545e−2 +3.320e−1 −3.341e−1 +9.868e−1 0 0 0

0 0 0 0 0 0 0 +1.000e+0 −1.000e−10 0
0 0 0 0 0 0 0 +1.000e−2 +1.000e+0 0
0 0 0 0 0 0 0 0 0 +9.417e−1

 (32)

Bp=


−4.007e+0
−5.769e+0
−6.522e+0

2.490e+0
8.562e−1
1.229e−3
1.438e−1
1.000e+0
5.000e−3

0

 , Cp=


9.209e−3
7.221e−3
1.924e−2
1.861e−2
9.441e−2
4.953e−4

−2.946e−3
0
0

−3.495e−1



>

, B=


−2.372e+0
−2.540e+0
−1.210e−1
−1.565e−4
−6.245e−2

1.151e+0
4.083e−2
2.255e−1
−1.528e−2
−9.720e−4

 , C=


−2.372e−2

2.540e−2
1.210e−3
−1.565e−6

6.245e−4
1.151e−2
4.083e−4
−2.255e−3

1.528e−4
9.720e−6



>

, D=−2.140e−1 (33)

A=


8.195e−1 2.812e−1 −3.317e−2 2.699e−2 −1.649e−1 1.318e−1 1.059e−2 −6.733e−2 1.750e−3 6.525e−5
−2.812e−1 −4.817e−1 −1.668e−1 8.654e−2 −5.403e−1 1.469e−1 1.837e−2 −1.211e−1 1.942e−3 2.134e−5

3.317e−2 −1.668e−1 9.749e−1 1.696e−2 −9.104e−2 7.638e−2 3.357e−3 −2.006e−2 8.441e−4 4.548e−5
2.699e−2 −8.654e−2 −1.696e−2 9.601e−1 2.528e−1 5.956e−2 1.654e−3 −9.085e−3 6.046e−4 3.843e−5
1.649e−1 −5.403e−1 −9.104e−2 −2.528e−1 6.022e−1 3.888e−1 1.150e−2 −6.420e−2 3.945e−3 2.454e−4
1.318e−1 −1.469e−1 −7.638e−2 5.956e−2 −3.888e−1 4.664e−1 −6.206e−2 4.224e−1 −8.490e−4 3.703e−4
1.059e−2 −1.837e−2 −3.357e−3 1.654e−3 −1.150e−2 −6.206e−2 9.832e−1 1.258e−1 7.737e−3 6.392e−4
6.733e−2 −1.211e−1 −2.006e−2 9.085e−3 −6.420e−2 −4.224e−1 −1.258e−1 −4.483e−2 7.258e−2 5.631e−3
−1.750e−3 1.942e−3 8.441e−4 −6.046e−4 3.945e−3 8.490e−4 −7.737e−3 7.258e−2 9.838e−1 −2.474e−3
−6.525e−5 2.134e−5 4.548e−5 −3.843e−5 2.454e−4 −3.703e−4 −6.392e−4 5.631e−3 −2.474e−3 9.418e−1

 (34)

(
I 0 0

−Bp I 0
−I 0 I

)(
Tk+1
X̂k+1

Uk

)
=

(
0 −(QCp + Kc) Q
0 (Ap −Kf C) Kf
0 0 0

)(
Tk

X̂k
Yk

)
(35)


(

I 0
−Q I

) (
0
0

) (
0
0

)(
−Kf −Bp

)
I 0(

0 −I
)

0 I



(

T
(1)
k+1

T
(2)
k+1

)
X̂k+1

Uk

 =


(

0 0
0 0

) (
−Cp
−Kc

) (
I
0

)(
0 0
)

Ap 0(
0 0
)

0 0



(

T
(1)
k

T
(2)
k

)
X̂k
Yk

 (36)


