
Bit Accurate Roundoff Noise Analysis of Fixed-Point Linear Controllers

Thibault HILAIRE, Daniel MÉNARD and Olivier SENTIEYS
IRISA/IRISA - Cairn project, University of Rennes 1, FRANCE

surname.name@irisa.fr

Abstract— The analytic evaluation of roundoff noise is an
interesting approach to analyze the effects of fixed-point
implementation of linear filters or controllers. This paper
is based on a generic framework that describes controller
algorithms. Fixed-point implementation (in different schemes)
that is associated to these algorithms are exhibited, and the
output roundoff noise power is then analytically build. Finally,
the optimal realization problem, according to the roundoff noise
power, is considered.

I. INTRODUCTION

The majority of signal processing and control systems are
digitally implemented into general purpose microprocessors,
DSP1 or specific computing devices (ASIC2, FPGA3, etc.).
Since the processor cannot compute with infinite precision,
the fixed-point implementation of filters/controllers leads to
deterioration in performance. They have two separate origins
[3] corresponding to the quantization of embedded coeffi-
cients and the roundoff errors in the numerical computations.
They can respectively be formalized as parametric errors and
numerical noises. If the controller and the target architecture
are specified, they both depend on the realization (the math-
ematical algorithm used and its parameters), the fixed-point
representation of the variables and the coefficients, and the
software/hardware design. Here only roundoff errors (see [5]
for parametric errors) are considered.

The roundoff errors have been studied in two different
ways: works in [7], [14], [3] deal with a roundoff noise
measure (the Roundoff Noise Gain) unlinked to hardware
considerations in order to optimize the realization with
respect to that criteria, whereas works in [12], [10] deal with
the Signal Quantization Noise Ratio and are more focused
on the software/hardware realizations.
Since the equivalent realizations and the HW/SW consid-
erations are not yet exploited together, this work aims
at combining these two approaches and provides a new
roundoff noise power expression linked to two precise fixed-
point implementation schemes. It is a part of a more global
approach, from the filter/controller design to the optimization
of the fixed-point coefficients and the final code generation.
A Toolbox for Matlab (FWR Toolbox4) has been specially
developed for this approach.

The objective of this paper is to exhibit the precise fixed-
point specification of any given controller realization and

1Digital Signal Processors
2Application-Specific Integrated Circuit
3Field Programmable Gate-Array
4Sources available at http://fwrtoolbox.gforge.inria.fr/

to evaluate the global roundoff noise power. Then, since
various algorithms exists to numerically realize a linear
time invariant filter, it is of interest to consider the optimal
implementation problem.

This paper is organized as follows. After presenting the
implicit state-space framework in section II, a general round-
off noise analysis, applied to this form, is exhibited in section
III. The automatic fixed-point implementation is presented
in section IV and roundoff noise power in section V. The
optimal design problem and some numerical results are
finally proposed in section VI and VII.

II. THE IMPLICIT STATE-SPACE FRAMEWORK

Work in [5] highlights the interest of the implicit state-
space representation in the context of Finite Word Length
(FWL) implementation problems and proposes to use a spe-
cialized form directly connected to the in-line computations
to be performed. It can be used as a unifying framework
to allow a more detailled (but macroscopic) description of
FWL implementations. Various realizations, like q (shift) or
δ-realizations, classical Direct Forms I and II, cascade or
parallel decompositions, mixed structures, ... may be then
described in a single unifying form [5], [4].

Definition 1 (Implicit specialized form) Equation (1) re-
calls the specialized implicit form that explicitly expresses
the parametrization and the intermediate variables used: J 0 0
−K In 0
−L 0 I

T (k + 1)
X(k + 1)
Y (k)

=

0 M N
0 P Q
0 R S

T (k)
X(k)
U(k)

 (1)

where

• J ∈ Rl×l, K ∈ Rn×l, L ∈ Rp×l, M ∈ Rl×n, N ∈
Rl×m, P ∈ Rn×n, Q ∈ Rn×m, R ∈ Rp×n, S ∈ Rp×m,
T (k) ∈ Rl, X(k) ∈ Rn, U(k) ∈ Rm and Y (k) ∈ Rp,

• U(k) represents the m inputs, and Y (k) the p outputs,
• X(k + 1) is the n stored states (X(k) is effectively

stored from one step to the next, in order to compute
X(k + 1) at step k),

• T (k + 1) is the l intermediate variables in the cal-
culations of step k (the column of 0 in the second
matrix shows that T (k) is not used for the calculation
at step k: that characterizes the concept of intermediate
variables),

• the matrix J is lower triangular with 1 on the diagonal.

T (k+1) and X(k+1) form the state-vector: X(k+1) is
stored from one step to the next, while T (k+1) is computed
and used inside one time step.

It is implicitly considered throughout the paper that the
computations associated to the realization (1) are associated
to the following algorithm:

(i) intermediate variable computation (J is lower triangu-
lar, so the first value of T (k + 1), T1(k + 1), is first
calculated, and then T2(k+1) using T1(k+1) and so
on (the computation of J−1 is not necessary)):
J.T (k + 1)←M.X(k) +N.U(k)

(ii) state-vector update:
X(k + 1)← K.T (k + 1) + P.X(k) +Q.U(k)

(iii) outputs computation:
Y (k)← L.T (k + 1) +R.X(k) + S.U(k)

Steps (ii) and (iii) can be swapped in order to reduce the
computational delay from input(s) to output(s).
Equation (1) is equivalent in infinite precision to the classical
state-space form:T (k + 1)

X(k + 1)
Y (k)

 =

 0 J−1M J−1N
0 AZ BZ

0 CZ DZ

 T (k)
X(k)
U(k)

 (2)

with:
AZ = KJ−1M + P, BZ = KJ−1N +Q,
CZ = LJ−1M +R, DZ = LJ−1N + S.

(3)

However, equation (2) corresponds to a different parame-
trization than the one in eq. (1).
The equivalent transfer function considered is then given by

H : z 7→ CZ(zIn −AZ)−1BZ +DZ (4)

In the following, a realization R will be defined in
the implicit form by its parameters used for the internal
description R , (J,K,L,M,N, P,Q,R, S). It could also
be equivalently written in a compact formR = (Z, l,m, n, p)
with

Z ,

−J M N
K P Q
L R S

 (5)

The usual realizations (direct forms, state-space, δ-
realizations, cascade, parallel, mixed realization, etc.) can be
easily expressed in the Implicit State-Space Framework. For
example, a δ-state-space realization{

δ[X(k)] = AδX(k) +BδU(k)
Y (k) = CδX(k) +DδU(k) (6)

where δ = q−1
∆ (∆ is strictly positive constant, q is the shift-

operator) can be expressed as: In 0 0
−∆In In 0

0 0 I

T (k + 1)
X(k + 1)
Y (k)

=

0 Aδ Bδ

0 In 0
0 Cδ Dδ

T (k)
X(k)
U(k)


(7)

This form is well known [3], [13] to be numerically superior
to the usual shift-operator, because it generally results in
less sensitive implementation with less roundoff noise. Other
examples can be found in [5], [4].

III. ROUNDOFF NOISE ANALYSIS

A. Preliminaries

The first (µ) and second (σ, ψ) order moments of a noise
vector ξ are denoted and defined by:

µξ , E {ξ(k)} (8)

ψξ , E
{

(ξ(k)− µξ) (ξ(k)− µξ)
>

}
(9)

σ2
ξ , E

{
(ξ(k)− µξ)

> (ξ(k)− µξ)
}

= tr (ψξ) (10)

where E{·} and tr(·) are respectively the mean and the trace
operator.

The following lemma recalls the basic properties of noise
transmission through a linear system:

Lemma 1 Assume the input noise, U(k), to be such that

E
{
(U(k)− µU) (U(k − l)− µU)>

}
= δ0,lψU (11)

where δi,j represents the Kronecker delta. Denote by Y (k)
the resulting output of U(k) through the transfer matrix G.
If (A,B,C,D) is a state-space realization of G, the first and
second order moments of Y are given by:

µY = (C(I −A)−1B +D)µU (12)
σ2

Y = tr
(
ψU (D>D +B>WoB)

)
(13)

where Wo is the observability Gramian of G. Wo is the
unique solution of the discrete Lyapunov equation:

Wo = A>WoA+ C>C (14)
Proof: It is well known that C(I −A)−1B +D is the DC
gain and σ2

Y = ‖GϕU‖2l2 , with ϕU such that ψU = ϕUϕ
>
U .

The l2-norm expression with grammians is then applied. See
[15], [6].

B. Roundoff Noise Analysis

Let us consider a realization R described with the implicit
form(1), with transfer function H . When implemented, the
steps (i) to (iii) are modified by the add of noises ξT (k),
ξX(k) and ξY (k):

J.T (k + 1)←M.X(k) +N.U(k) + ξT (k)
X(k + 1)←K.T (k + 1) + P.X(k) +Q.U(k) + ξX(k)

Y (k)←L.T (k + 1) +R.X(k) + S.U(k) + ξY (k)
(15)

These noises added depend on:
• the way the computations are organized (the order of

the sums) and done,
• the fixed-point representation of the inputs, the outputs,
• and the fixed-point representation chosen for the states,

the intermediate variables and the coefficients.
They are modelled as independent white noise, characterized
by their first and second order moments (section V).

Denote ξ the vector with all the added noise sources:

ξ(k) ,

ξT (k)
ξX(k)
ξY (k)

 (16)

Proposition 1 It is then possible to express the implemented
system as the initial system with a noise ξ′(k) added on the
output(s) (see figure 1).

+
ξ(k) ξ′(k)

Y (k)U(k)

Hξ
Y ′(k)

R

Fig. 1. Equivalent system, with noises extracted

ξ′(k) is the noise ξ(k) through the transfer function Hξ

defined by:

Hξ : z → CZ (zIn −AZ)−1
M1 +M2 (17)

with

M1 ,
(
KJ−1 In 0

)
(18)

M2 ,
(
LJ−1 0 Ip2

)
(19)

Proof: Hξ comes from a reformulation of equation (15),
with ξ as one input of the system.

Proposition 2 The output noise power is defined as the
power of the noises added on the output(s):

P , E
{
ξ′(k)ξ′>(k)

}
(20)

It is evaluated by:

P = tr
(
ψξ

(
M>

2 M2 +M>
1 WoM1

))
+ µ>ξ′µξ′ (21)

where µξ′ = (CZ(I − AZ)−1M1 + M2)µξ and Wo is the
observability grammian of the system R.
Proof: Eq. (20) leads to P = σ2

ξ′ + µ>ξ′µξ′ . Then, lemma 1
is applied on noise ξ(k) through Hξ.

Remark 1 Equation (21) is a good illustration of the rela-
tionship between the works done in the hardware/software
community and the one done in the control community: ψξ

and µξ depend only on H/W implementation, whereas the
other terms only depend on the algorithm used.

IV. FIXED-POINT IMPLEMENTATION

Since each variable can have free fixed-point format, it
exists various fixed-point possible implementations for steps
(i) to (iii). This section specifies implementation scheme and
fix the fixed-point formats, in order to dertermine ξ(k) and
then ψξ.

A. Fixed-point representation

In the paper, the notation (β, γ) is used for the fixed-
point representation: β is the total wordlength in bits of the
representation, whereas γ is the fractional part wordlength
(see figure 2). These parameters could be scalars, vectors or
matrices, according to the variables they refer to.

± 2
1

2
0

2
−1... ...

.2β−γ−2

β − γ − 1

β

γ

2−γ

integer part fractional part

s

Fig. 2. Fixed-point representation

B. Scalar product

As the implementation of eq. (1) only requires scalar
products, let us consider the following scalar product:

S =
n∑

i=1

PiEi (22)

where (Pi)16i6n are given coefficients and (Ei)16i6n some
bounded variables.
Let us consider the following very large hypotheses:

• (β, γ) is the fixed-point format of S, such that there is
no overflow when evaluating

∑
PiEi

• (βi, γi) are the fixed-point format of Ei (∀1 6 i 6 n)
• (Pi)16i6n are given, and represented with β′i bits. The

fixed-point format (β′i, γ
′
i) can be deduced by:

γ′i , β′i − 2−
⌊
log2 |Pi|

⌋
(23)

where the bxc operation rounds x to the nearest integer
lower than or equal to x.

It is also considered that all the additions are realized by one
accumulator with βADD bits, plus βg guards bits and that
all the additions are done on the same fixed-point format
(βADD + βg, γADD).

Since all the fixed-point formats are defined, some quanti-
zation operations (in order to adapt the wordlength and/or the
fractional wordlength) could be necessary. Figure 3 shows
the complete flow.

+

+

×

×

×

×

Q1[]

Q2[]

Qi[]

Q[]

E1

E2

Ei

En

P1

P2

Pi

Pn

(β, γ)(βADD + βg, γADD)

(βi, γi)

(β1, γ1)

(β′
1, γ

′
1)

(β′
i, γ

′
i)

(βADD, γADD)

(βADD + βg, γADD)

Qn[] +

Fig. 3. Fixed-point formats of the scalar product

1) Accumulator fractional part determination: The com-
mon fixed-point format for the additions must be known. It
is such that:
• the dynamic of each product can be represented without

overflow. As (βi + β′i, γ
′
i + γi) is the format of each

product, γADD must satisfy (∀1 6 i 6 n):

βADD − 1− γADD > βi + β′i − γi − γ′i − 1 (24)

• the final result may be represented without overflow
with (βADD + βg, γADD) as format, so:

βADD + βg − 1− γADD > β − 1− γ (25)

Then, the condition γADD 6 γADD
max

, with

γADD
max

= βADD−max
(
β − βg − γ,max

i
(βi + β′i − γi − γ′i)

)
(26)

guaranties no overflow in the evaluation of S.
Moreover, γADD should be the greatest possible in or-

der to minimize the precision loss, but since γADD >
max

i
(γi + γ′i), there is no more precision loss.

So the following γADD is chosen:

γADD = min
(
γADD

max
,max

i
(γi + γ′i)

)
(27)

2) Quantization between product and accumulation: In
order to align the fixed-point format after the products
to the accumulator fixed-point format, there is a potential
quantization block (shift) between each product and the
accumulation. This scheme is called Roundoff After Multi-
plication (RAM).
It is also possible to move these shifts into the coefficients,
by modifying their format such that the fixed-point format of
each multiplication is compatible with the accumulator’s one.
In that case, the computational scheme is called Roundoff
Before Multiplication (RBM).

So, let us introduce γ̃′i such that (β′i, γ̃
′
i) is the final fixed-

point format for the coefficient Pi:

γ̃′i =

{
γ′i in RAM scheme
γADD − γi in RBM scheme

(28)

It is then necessary to add, after the ith multiplication, a
right shift of γi + γ̃′i − γADD in order to align the formats
(so, no shift in RBM case).

3) Final quantization: After the last addition in the accu-
mulator, the result could be quantified to be stored in S. In
order to align the accumulator format (βADD + βg, γADD)
on the output format (β, γ), a right shift of γADD − γ bits
is required.

C. Application to the Implicit Specialized Form

This analyze is applied to the Implicit Specialized Form.
Let R = (Z, l,m, n, p) be a realization and let us consider
that:

• the inputs U(k) (bounded by
max

|U |) have (βU , γU) as
fixed-point format;

• the outputs, states and intermediate variables are repre-
sented with βY , βX and βT bits;

• the coefficients are represented with βZ bits;
• the additions are done by accumulators of βADD bits,

plus βg guards bits (βADD ∈ R(l+n+m)×1).

Proposition 3 The outputs, states and intermediate vari-
ables’ formats are given by5:γT

γX

γY

 =

βT

βX

βY

− 2.1l+n+p,1 −
⌊
log2

(
‖Hmax‖l1

max

|U |
)⌋

(29)
where 1k,l represents the matrix of Rk×l with all coefficients
set to 1, ‖.‖l1 the l1-norm and

Hmax : z → N1 (zIn −AZ)−1
BZ +N2, (30)

N1 ,

J−1M
In
CZ

 , N2 ,

J−1N
0
DZ

 (31)

Proof: Hmax is the transfer function from U(k) to T (k+1),
X(k + 1) and Y (k) and determine the maximum value for
the intermediate variables, the states and the output(s).
Denote γZ the binary point position6 of the coefficients Z:

γZ = βZ − 2.1l+n+p,l+n+m −
⌊
log2 |Z|

⌋
(32)

The fixed-point formats of the additions are given by:

γADD = βADD−max
row

βT

βX

βY

− βg −

γT

γX

γY

 , α

 (33)

where

α = max
row

βZ − γZ + 1l+n+p,1

βT

βX

βU

−
γT

γX

γU

>


(34)
and max

row
(M) returns a column vector with the maximum

value of each row of M .
The final alignments are right shifts of dADD bits, with:

dADD = γADD −

γT

γX

γY

 (35)

Denote γ̃Z the final binary point position of the coefficients
Z, according to RAM or RBM scheme, and dZ the shifts
needed after each multiplication ((dZ)i,j is the right shift
needed after the multiplication by Zi,j) in order to align the
format after each multiplication. Then:

γ̃Z =


γZ if RAM

γADD.11,l+n+m − 1l+n+p,1.

γT

γX

γU


>

if RBM

(36)
5In order to simplify the expressions, matrix extensions of log2, floor

operator b.c and power of 2 are used. For example, if M ∈ Rp×q , then
log2(M) ∈ Rp×q such as (log2(M))i,j , log2(Mi,j).

6(γZ)i,j could be −∞ for null coefficients, but it is not a problem
because such coefficients are not implemented

and

dZ = γ̃Z + 1l+n+p,1.

γT

γX

γU

> − γADD.11,l+n+m (37)

(dZ is a null matrix in RBM case).
With dZ , γ̃Z , γADD, dADD, γT , γX and γY , the fixed-point
implementation of the controller is entirely defined.

V. OUTPUT NOISE POWER IN RBM SCHEME

Due to lack of place, this section only focuses on RBM
scheme (RAM case could be examined in similar way).
In Roundoff Before Multiplication case, quantizations only
occurs at the end of the additions, when the accumulator
result is stored in intermediate variables, states or output(s)
and a right shift of dADD bits is applied.

Remark 2 in RBM scheme, part of the roundoff errors is
transformed in parametric errors, that are not studied here.
See [5] for work on transfer function sensitivity.

The lemma 2 recalls the noise produced during shift:

Lemma 2 Let x(k) be a signal with fixed-point format
(β + d, α + d). Right shifting x(k) of d bits is similar to
add to x(k) the independent white noise e(k).
The right shift could round x(k) towards −∞ (truncation:
default behaviour) or toward the nearest integer (nearest
rounding: possible with some additional hardware/software
operations [11]). If d > 0, the moments of e(k) are given
by:

truncation best roundoff
µe 2−γ−1(1− 2−d) 2−γ−d−1

σ2
e

2−2γ

12 (1− 2−2d) 2−2γ

12 (1− 2−2d)
(38)

else (d 6 0) e(k) is null.
Proof: See [2].

It is now possible to define the moments of ξ(k):

Proposition 4 Denote γ̄ ,

γT

γX

γY

 and define s by

si ,

{
1 if dADDi > 0
0 otherwise

(39)

Then µξ is given by:

(µξ)i =

{
si2−γ̄i−1 truncation
si2−γ̄i−1−dADD nearest rounding

(40)

and, since these noises are independent, ψξ is diagonal with:

(ψξ)i,i = si
2−2γ̄i

12
(
1− 2−dADD

)
(41)

Then, with equation 21, the roundoff noise power could be
determined.

VI. OPTIMAL DESIGN

Since the Roundoff Noise power depends on the realiza-
tion chosen to numerically realize the filter, it is of interest
to find, among the equivalent realizations set, those with low
roundoff noise.

In order to exploit the potential offered by the spe-
cialized implicit form in improving implementations, it is
necessary to describe sets of equivalent system realizations.
The Inclusion Principle introduced by Šiljak and Ikeda [8]
in the context of decentralized control, could be extended
to the Specialized Implicit Form in order to characterize
equivalent classes of realizations [5]. Although this extension
gives the formal description of equivalent classes, it is of
practical interest to consider only realizations with the same
dimensions, where transformation from one realization to
another is only a similarity transformation.

Proposition 5 Consider a realization R0 = (Z0, l,m, n, p).
All realizations R1 = (Z1, l,m, n, p) such that

Z1 =

Y U−1

Ip

Z0

W U
Im

 (42)

are equivalent (with U ∈ Rn×n, Y ∈ Rl×l and W ∈ Rl×l

non-singular matrices).

For particular structured realizations, the transformation
matrices U , Y and W may be linked (for δ-state-space, Y =
U−1 and W = U , see (7) ; and for classical state-space,
Y =W = Il).

Then, the optimal design problem that consists in finding
the best realization, among the equivalent realizations set,
could be defined:

Ropt = arg min
R∈RH

J (R) (43)

where J is a FWL criteria (output roundoff noise gain,
transfer function sensitivity [5], etc.) and RH the set of
equivalent realizations.

Due to the size of RH , this problem cannot be solved
practically: the search is done among equivalent realizations
with particular structure (state-space, cascade decomposition,
sparse structures, δ-state-space, etc.).

Since the measure J could be non-smooth and/or non-
convex, the Adaptive Simulated Annealing (ASA) method
has been chosen to solve that problem ([9], [1]).

VII. EXAMPLES

To illustrate the roundoff noise power measure and the op-
timal design problem, let us consider the following lowpass
Butterworth filter:

H(z) =
0.003622z2 + 0.007243z + 0.003622

z2 − 1.823z + 0.8372
(44)

and the associated realizations in Roundoff Before Multi-
plication scheme, with input, output, coefficients, states,
intermediate variables represented with 16 bits and 32 bits

for the accumulator (no guard bit).
max

|U | = 20 (so γU = 10).
The following realizations are considered:
Z1: direct form II with shift-operator,
Z2: roundoff noise-optimal state-space realization,
Z3: roundoff noise-optimal δ-realization (described by eq.

(6)), with ∆ = 2−5.
The roundoff noise-optimal realizations Z2 and Z3 are

obtained by solving the optimal design problem for the
output roundoff noise measure.
The roundoff noise power predicted by eq. (21) was con-
firmed by statistical measures on the difference between
floating-point realizations and so-determined fixed-point re-
alizations (with fixed-point quantized coefficients).

TABLE I
ROUNDOFF NOISE POWER AND COMPUTATIONAL COST

realization roundoff noise power Nb. operations

Z1 3.914e− 3 4 + 5×
Z2 3.903e− 7 6 + 9×
Z3 3.540e− 7 8 + 11×

The results are given in table I. Z3 has the lowest roundoff
noise power but required more operations than Z1 and Z2.
The algorithm 1 presents the fixed-point algorithm associated
to realization Z3 (RBM scheme). If a low tolerance on
roundoff noise is required, the simplest implementation Z1

should not be used.
These results depend on the filter/controller. It is possible to
find examples where the optimal state-space realization has
a lower roundoff noise than the optimal δ-realization.

Even if it is not the goal of this paper, one could also
consider the parametric errors (transfer function sensitivity,
pole sensitivity). A global methodology with multi-objectives
optimization will be presented in future papers.

VIII. CONCLUSION

The Implicit State-Space Form provides a general frame-
work for the analysis and design of digital filter implemen-
tation in FWL context. The fixed-point format determination
for two computational schemes has been developed and
exhibited, with a bit-accurate output noise power analysis.
It allows to compare different realizations and to find the
optimal one (according to roundoff noises). The fixed-point
code can be automatically produced.
Our present work focuses on a global methodology to search
for the best implementation and to solve tradeoff between
sensitivity, roundoff errors, computational resources, etc.

REFERENCES

[1] S. Chen and B.L. Luk. Adaptive simulated annealing for optimization
in signal processing applications. Signal Processing, 79:117–128,
1999.

[2] G. Constantinides, P. Cheung, and W. Luk. Truncation Noise in Fixed-
Point SFGs. IEE Electronics Letters, 35(23):2012–2014, Nov. 1999.

[3] M. Gevers and G. Li. Parametrizations in Control, Estimation and
Filtering Probems. Springer-Verlag, 1993.

[4] T. Hilaire, P. Chevrel, and Y. Trinquet. Implicit state-space representa-
tion : a unifying framework for FWL implementation of LTI systems.
In Proc. of the 16th IFAC World Congress. Elsevier, July 2005.

Input: u: 16 bits integer
Output: y: 16 bits integer
Data: xn, xnp: array [1..2] of 16 bits integer
Data: Acc: 32 bits integer
begin

//Intermediate variables
Acc← (xn(1) ∗ −26130);
Acc← Acc+ (xn(2) ∗ −26185);
Acc← Acc+ (u ∗ 8780);
T0← Acc >> 15;
Acc← (xn(1) ∗ 8856);
Acc← Acc+ (xn(2) ∗ −10175);
Acc← Acc+ (u ∗ −24493);
T1← Acc >> 15;
//States
Acc← T0 << 12;
Acc← Acc+ xn(1) << 15;
xnp(1)← Acc >> 15;
Acc← T1 << 13;
Acc← Acc+ xn(2) << 15;
xnp(2)← Acc >> 15;
//Outputs
Acc← (xn(1) ∗ 23633);
Acc← Acc+ (xn(2) ∗ 1808);
Acc← Acc+ (u ∗ 119);
y ← Acc >> 15;
//Permutations
xn← xnp;

end
Algorithm 1: Numerical fixed-point algorithm of Z3.

[5] T. Hilaire, P. Chevrel, and J.F. Whidborne. A unifying framework for
finite wordlength realizations. IEEE Trans. on Circuits and Systems,
8(54), August 2007.

[6] T. Hilaire, D. Ménard, and O. Sentieys. Roundoff noise analysis
of finite wordlength realizations with the implicit state-space frame-
work. In 15th European Signal Processing Conference (EUSIPOC’07),
September 2007.

[7] S.Y. Hwang. Minimum uncorrelated unit noise in state-space digital
filtering. IEEE Trans. on Acoust., Speech, and Signal Processing,
25(4):273–281, August 1977.

[8] M. Ikeda, D. Šiljak, and D. White. An inclusion principle for dynamic
systems. IEEE Trans. Automatic Control, 29(3):244–249, March 1984.

[9] L. Ingber. Adaptive simulated annealing (ASA): Lessons learned.
Control and Cybernetics, 25(1):33–54, 1996.

[10] S. Kim, KI. Kum, and W. Sung. Fixed-point optimization utility for C
and C++ based digital signal processing programs. IEEE Transactions
on Circuits and Systems, 45(11):1455–1464, November 1998.

[11] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee. DSP Processor Fun-
damentals: Architectures and Features. Berkeley Design Technology,
Inc, Fremont, CA, 1996.

[12] D. Ménard and O. Sentieys. Automatic evaluation of the accuracy of
fixed-point algorithms. In Proceedings of DATE02 (Design Automation
and Test in Europe), march 2002.

[13] R. Middleton and G. Goodwin. Digital Control and Estimation, a
unified approach. Prentice-Hall International Editions, 1990.

[14] C. Mullis and R. Roberts. Synthesis of minimum roundoff noise fixed
point digital filters. In IEEE Transactions on Circuits and Systems,
volume CAS-23, September 1976.

[15] A. Papoulis. Probability, Random Variables, and Stochastic Processes.
Mc Graw Hill, 1991.

