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Low-Parametric-Sensitivity Realizations With
Relaxed L2-Dynamic-Range-Scaling Constraints

Thibault Hilaire, Member, IEEE

Abstract—This brief presents a new dynamic-range scaling for
the implementation of filters/controllers in state-space form. Re-
laxing the classical L2-scaling constraints by specific fixed-point
considerations allows for a higher degree of freedom for the opti-
mal L2-parametric sensitivity problem. However, overflows in the
implementation are still prevented. The underlying constrained
problem is converted into an unconstrained problem for which a
solution can be provided. This leads to realizations that are still
scaled but less sensitive.

Index Terms—Coefficient sensitivity, digital filter implementa-
tion, fixed-point implementation, scaling.

I. INTRODUCTION

THE MAJORITY of control (or signal processing) systems
is implemented in digital general-purpose processors, dig-

ital signal processors (DSPs), field-programmable gate arrays
(FPGAs), etc. Since these devices cannot compute with infi-
nite precision and approximate real-number parameters with a
finite binary representation, the numerical implementation of
controllers (filters) leads to deterioration in characteristics and
performance. This has two separate origins, corresponding to
the quantization of the embedded coefficients and the roundoff
errors occurring during the computations. They can be formal-
ized as parametric errors and numerical noises, respectively.
The focus of this brief is on parametric errors, but one can refer
to [1]–[4] for roundoff noises.

It is also well known that these finite-wordlength effects
depend on the structure of the realization. This motivates us
to investigate the minimization problem. It has widely been
studied since Thiele published [5] and [6], and the definition
of a tractable input–output sensitivity norm (the L1/L2-
sensitivity). This work has been extended with a more nat-
ural and reasonable measure, the L2-sensitivity [1], [7]. The
dynamic-range-scaling constraints have been introduced in [8]
and [9] to prevent overflow and underflow during the evaluation
of the state vector and the state and criteria normalization.
These constraints have to be considered in the L2-sensitivity
minimization problem, for which Hinamoto et al. [10] propose
an efficient quasi-Newton algorithm to solve it.

This brief investigates the L2-dynamic-range-scaling prob-
lem by considering the concrete fixed-point implementation of
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state-space realizations. It reveals that the classical L2-scaling
is only a sufficient condition to prevent overflows, and thus, it
can slightly be relaxed to extend the degrees of freedom for the
optimization process. New relaxed L2-dynamic-range scalings
are then presented with respect to the described computational
scheme. Finally, the L2-sensitivity minimization problem with
relaxed L2-scaling constraints is solved. A numerical exam-
ple illustrates that the proposed constraints can offer reduced
L2-sensitivity with overflow protection.

II. L2-SENSITIVITY ANALYSIS

Let (A, b, c, d) be a stable, controllable, and observ-
able linear discrete-time single-input–single-output state-space
system, i.e.,

{
x(k + 1) = Ax(k) + bu(k)
y(k) = cx(k) + du(k) (1)

where A ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n, and d ∈ R. u(k) is the
scalar input, y(k) is the scalar output, and x(k) ∈ Rn×1 is the
state vector.

Its input–output relationship is given by the scalar transfer
function h : C → C defined by

h : z $→ c(zIn − A)−1b + d. (2)

The quantization of the coefficients introduces some uncer-
tainty to A, b, c, and d, leading to A + ∆A, b + ∆b, c + ∆c,
and d + ∆d, respectively. It is of interest to consider the sen-
sitivity of the transfer function with respect to the coefficients,
based on the following definitions.

Definition 1 (Transfer Function Sensitivity): Consider X ∈
Rm×n to be a matrix and f : Rm×n → C to be a scalar complex
function, differentiable with respect to all the entries of X .
The sensitivity of f with respect to X is defined by the matrix
SX ∈ Rm×n

∂f

∂X
∆= SX , with (SX)i,j

∆=
∂f

∂Xi,j
. (3)

Definition 2 (Lp-Norm): Let H : C → Ck×l be a function
of the scalar complex variable z. ‖H‖p is the Lp-norm of H ,
defined by

‖H‖p
∆=



 1
2π

2π∫

0

∥∥H(ejω)
∥∥p

F
dω





1
p

(4)

where ‖.‖F is the Froebenius norm.
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Gevers and Li [1] have proposed the L2-sensitivity measure
to evaluate the coefficient roundoff errors. It is defined by

ML2

∆=
∥∥∥∥

∂h

∂A

∥∥∥∥
2

2

+
∥∥∥∥

∂h

∂b

∥∥∥∥
2

2

+
∥∥∥∥

∂h

∂c

∥∥∥∥
2

2

+
∥∥∥∥

∂h

∂d

∥∥∥∥
2

2

(5)

and can be computed by ∂h
∂A (z) = G'(z)F'(z), ∂h

∂b (z) =
G'(z), ∂h

∂c (z) = F (z), and ∂h
∂d (z) = 1, with

F (z) ∆= (zIn − A)−1b G(z) ∆= c(zIn − A)−1. (6)

This measure is an extension of the more tractable but less
natural L1/L2-sensitivity measure proposed by Tavşanoğlu and
Thiele [5] [‖ ∂h

∂A‖2
1 instead of ‖ ∂h

∂A‖2
2 in (5)].

Remark 1: It is also possible to regroup all the coefficients
in one unique matrix

Z
∆=

(
A b
c d

)
. (7)

Then, with the L2-norm property, ML2 = ‖ ∂h
∂Z ‖2

2. From (6)
and the associated state spaces, the sensitivity transfer function
∂h
∂Z can be described by the multiple-input–multiple-output
(MIMO) state-space system (Ã, B̃, C̃, D̃) with

Ã
∆=

(
A bc
0 A

)
B̃

∆=
(

0 b
In 0

)

C̃
∆=

(
In 0
0 c

)
D̃

∆=
(

0 0
0 1

)
. (8)

See [1] and [11] for more details.
The following proposition allows us to compute ML2 .
Proposition 1: Let us consider H as the MIMO state-space

system (K,L,M ,N). Its L2-norm can be computed by

‖H‖2
2 =tr(NN' + MWcM

') (9)
=tr(N'N + L'WoL) (10)

where Wc and Wo are the controllability and observability
Gramians, respectively. They are the solutions of the Lyapunov
equations

Wc = KWcK
' + LL' Wo = K'WoK + M'M .

(11)

Applying a coordinate transformation, defined by x̄(k) ∆=
T−1x(k), to the state-space system (A, b, c, d) leads to a new
equivalent realization (T−1AT ,T−1b, cT , d).

Since these two realizations are equivalent in infinite pre-
cision but are not equivalent in finite precision (fixed-point
arithmetic, floating-point arithmetic, etc.), the L2-sensitivity
then depends on T and is denoted by ML2(T ).

In this case, it is natural to define the following problem:
Problem 1 (Optimal L2-Sensitivity Problem): Considering a

state-space realization (A, b, c, d), the optimal L2-sensitivity
problem consists of finding the coordinate transformation T opt

that minimizes ML2

T opt = arg min
T invertible

ML2(T ). (12)

Reference [1] shows that the problem has one unique solu-
tion. Hence, for example, a gradient method can be used to
solve it.

III. Lp-DYNAMIC-RANGE SCALING

The Lp-dynamic-range-scaling constraints have been intro-
duced by Jackson in [8] and Hwang in [9]. They consist of scal-
ing the state-variable vector such that overflows or underflows
during its evaluation are prevented.

Definition 3 (Lp-Scaling): A state-space realization
(A, b, c, d) is said to be Lp-scaled if the Lp-norms of the
transfer functions from the input to each state are set to 1, i.e.,

∥∥e'
i (zIn − A)−1b)

∥∥
p

= 1 ∀ 1 ! i ! n (13)

where ei is the column vector of appropriate dimension and
with all elements being 0 except for the ith element, which is 1.

Let
max
u denote the maximum value of the input u

max
u

∆= max
k∈N

|u(k)| . (14)

The L1-scaling guarantees that the dynamic of each state xi is
lower than

max
u , whereas the L2-scaling guarantees that the vari-

ance of each state is unitary for a unit-variance centered white
noise input. L2-scaling does not completely prevent overflow
as does L1, but it is less conservative and more realistic, so it is
widely used [12].

With proposition 1 applied to the system (A, b,e'
i ,0), the

L2-scaling constraints (13) can be expressed as

(Wc)i,i = 1 ∀ 1 ! i ! n (15)

where Wc is the controllability Gramian of the state-space
system (A, b, c, d).

Problem 2 (Sensitivity Problem With L2-Scaling Con-
straints): The optimal L2-sensitivity problem with L2-scaling
constraints can be formulated as optimization problem 1, sub-
ject to the constraints in (15).

Moreover, it is possible to L2-scale a realization with the
following proposition.

Proposition 2 (a posteriori L2-Scaling): Considering a
state-space realization (A, b, c, d), it is also possible to
a posteriori L2-scale it with a diagonal coordinate transforma-
tion T such that

T i,i =
√

(Wc)i,i ∀ 1 ! i ! n. (16)

Then, there exist infinite transformation matrices T (not
necessarily diagonal) that produces L2-scaled realizations: let
us consider the invertible matrix U ∈ Rn×n; then, the trans-
formation matrix T = UV also produces L2-scaling with V
diagonal such that

V i,i =
√

(U−1WcU
−')i,i ∀ 1 ! i ! n. (17)

Proof: A transformation matrix T that transforms
(A, b, c, d) into (T−1AT ,T−1b, cT , d) changes the control-
lability Gramian Wc into T−1WcT

−'.
Since T is diagonal, the constraints (Wc)i,i = 1 imply that

T i,i =
√

(Wc)i,i.
Moreover, it is also possible to successively apply two trans-

formation matrices U and V on (A, b, c, d). If V is composed
according to (17), then the transformation T = UV performs
the L2-scaling. "

This proposition can be used to transform constrained
problem 2 into an unconstrained problem. Then, an
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Fig. 1. Fixed-point representation.

optimization algorithm like quasi-Newton can be used to solve
it. Other analytical algorithms for this problem can be found
in [3] and [10].

IV. FIXED-POINT IMPLEMENTATION

A. Fixed-Point Representation

In this brief, the notation (β, γ) is used for the fixed-point
representation of a variable or coefficient (2’s complement
scheme), according to Fig. 1. β is the total wordlength of
the representation in bits, whereas γ is the wordlength of the
fractional part (it determines the position of the binary point).
They are fixed for each variable (input, states, and output) and
each coefficient and implicit (unlike the floating-point represen-
tation). β and γ will be suffixed by the variable/coefficient they
refer to.

To represent a value x without overflow, a fixed-point repre-
sentation (βx, γx) may satisfy

βx − γx − 1 # )log2 |x|* + 1 (18)

where the )a* operation rounds a to the nearest integer less than
or equal to a (for positive numbers )a* is the integer part).

An important fixed-point issue is to find a valid fixed-point
representation such that (18) is satisfied for all values that x can
assume during the execution of the algorithm.

B. State Overflow

Definition 4 (State Overflow): The overflow of the state
variables (xi)1!i!n can be strictly avoided iff (1 ! i ! n)

∀ k, −2βxi
−γxi

−1 ! xi(k) < 2βxi
−γxi

−1. (19)

The overflows are avoided if the binary-point position of each
state is carefully chosen such that

γxi = βxi − 2 −
⌊
log2

max
xi

⌋
(20)

where
max
xi is the maximum magnitude for the ith state

max
xi

∆= max
k∈N

|xi(k)| . (21)

However, only upper bounds can be computed. The first
upper bound

up
xi can be obtained by an L1-norm

up
xi=

∥∥e'
i (zIn − A)−1b

∥∥
1

max
u (22)

and the second one can be estimated by an L2-norm [12]
up
xi+ δ

∥∥e'
i (zIn − A)−1b

∥∥
2

max
u . (23)

Here, the parameter δ can be interpreted as a representation of
the number of standard deviations of xi if the input is unit-

variance white centered noise (δ # 1). Since the L2-norm in
(23) does not give a strict bound [contrary to (22)], δ can be
seen as a safety parameter [12].

Finally, these upper bounds are used to define the binary-
point positions

γxi = βxi − 2 −
⌊
log2

up
xi

⌋
. (24)

In general, the L1 and L2 estimations of
up
xi approximately

leads to the same binary-point position, with 1- or 2-bit de-
viation. However, since the L2-norm is more tractable (with
proposition 1) and the L1-norm is too conservative (

max
xi ,

up
xi),

in practice, (23) is used, with δ = 1. After implementation, a
simulation-based estimation like in [13] or [14] can also be used
to verify in situ the peak values and the binary-point positions,
according to the inputs.

C. Computational Scheme

To implement a realization without overflows, two equivalent
choices are possible.

1) Set the binary-point position for each state according to
(24) to make sure that the fixed-point representation of
the states avoids state overflows.

2) Define a binary-point position for each state and apply a
scaling to them to adapt the peak values of each state to
the chosen binary-point position.

Here, we here focus on the second choice, referring to dynamic-
range-scaling constraints.

Let us consider in detail the fixed-point implementation of
the system given in (1). It leads to (n + 1) scalar products to be
evaluated of the form

S =
N∑

i=1

piqi (25)

where the (pi) are the given coefficients, and (qi) are bounded
variables.

To avoid bit-shift operations between each addition in the
evaluation of (25), the binary-point positions of each partial
product of the sum should be equal.

Then, two computational schemes are possible: the roundoff-
after-multiplication scheme, where shifts are added after each
product to align the operands of the sum (piqi is implemented
as (p′

i ∗ q′
i) >> di), and the roundoff-before-multiplication

scheme, where the required shifts are reported into the coef-
ficients (piqi is implemented as (p′

i >> di) ∗ q′
i).

The main idea of the scaling is to scale each variable (qi)
such that the shifts (di = 0, ∀ i) are prevented. In fixed-point
representation, the scaling only implies that all the (qi) have
a common format, and so do all the (pi). See [2] and [15] for
more details on implementation schemes.

Applied to the state-space realization (1), this yields that all
the states must have the same binary-point position as the input
and the coefficients A, b, c, and d.

In addition, since they have the same fractional part, their
quantization’s errors ∆A, ∆b, ∆c, and ∆d have the same
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magnitude 2−γZ−1, and the L2-sensitivity measure represents
a meaningful bound on the transfer function error ∆h

‖∆h‖2
2 !

∥∥∥∥
∂h

∂A
× ∆A

∥∥∥∥
2

2

+
∥∥∥∥

∂h

∂b
× ∆b

∥∥∥∥
2

2

+
∥∥∥∥

∂h

∂c
× ∆c

∥∥∥∥
2

2

+
∥∥∥∥

∂h

∂d
× ∆d

∥∥∥∥
2

2

(26)

! 2−2(γZ+1)ML2 . (27)

D. New L2-Scaling Constraints

Taking this into consideration, the overflows will be avoided
by setting the same binary-point position for the states and the
input and by applying an appropriate scaling on the states such
that the constraints (20) are satisfied.

Compared to strict L2-scaling where the states must satisfy
max
xi =max

u , here, the constraints are relaxed (but still restrictive
enough to guarantee the protection against overflow) and re-
placed by γxi = γu.

Proposition 3 (Relaxed L2-Scaling Constraints): Since the
input and the states may have the same binary-point position,
the L2-scaling constraints (15) are now transformed into

22αi

δ2
! (Wc)i,i < 4

22αi

δ2
∀ 1 ! i ! n (28)

where

αi
∆= βxi − βu −F2(

max
u ) (29)

and F2(x) is defined as the fractional value of log2(x)

F2(x) ∆= log2(x) − )log2(x)* . (30)

For microcontroller or DSP implementations (contrary to
FPGA or some application-specified integrated circuit imple-
mentations), the wordlength of all variables is equal, i.e., βu =
βxi (1 ! i ! n). Furthermore,

max
u could be set to a power

of two. Then, if δ is set to unity (as for classical L2-scaling
constraints), the relaxed L2-scaling constraints (28) become

1 ! (Wc)i,i < 4 ∀ 1 ! i ! n. (31)

Proof: The binary-point position of the input is set to
γu = βu − 2 − )log2

max
u *. Hence, with (24), the constraints

γu = γxi lead to

βu−)log2
max
u *=βxi−

⌊
log2

(
δ
∥∥e'

i (zIn−A)−1b
∥∥

2

max
u

)⌋

and
⌊
log2

(
δ
√

(Wc)i,i

)
+ F2(

max
u )

⌋
= βxi − βu (32)

and finally

2αi ! δ
√

(Wc)i,i < 2αi+1. (33)

"
It is important to remark that these new constraints allow

more freedom for the scaling and introduce a new degree of
freedom for the search for optimal realizations. Moreover, even
though not considered in this brief, it could give more freedom
for the minimization of the roundoff noise power.

V. OPTIMAL L2-SENSITIVITY REALIZATION WITH

RELAXED L2-NORM DYNAMIC-RANGE-SCALING

CONSTRAINTS

Then, these relaxed constraints can be applied to a new
sensitivity problem:

Problem 3 (Relaxed Sensitivity Problem): The optimal L2-
sensitivity problem with relaxed L2-norm dynamic-range-
scaling constraints can be expressed in the form of constrained
problem 2 subject to the constraints in (28).

This constrained problem can be solved by two different
means.

First, in addition to the n2 free parameters of the transfor-
mation matrix U applied to the system, n extra parameters
(γi)1!i!n can be considered. These (γi) represent the desired
L2-scaling and will be constrained by

22αi

δ2
! γi < 4

22αi

δ2
∀ 1 ! i ! n. (34)

Then, a diagonal transformation matrix Vγ is applied, with

(Vγ)i,i =

√
(Wc)i,i

γi
. (35)

In this case, a constrained optimization algorithm (like a
quasi-Newton one, implemented in fmincon with Matlab) can
then be used to solve the following problem:

(Uopt, γopt) = arg min
U invertible

γ satisfying (34)

ML2(UVγ). (36)

The optimal realization satisfying the relaxed L2 constraints
is then obtained by applying the transformation matrix T opt =
UoptVγopt

.
The other approach is to scale the system after each transfor-

mation to ensure that the constraints are met:
Proposition 4 (a posteriori Relaxed Scaling): Considering a

state-space realization, it is possible to a posteriori scale it with
a diagonal transformation matrix T given by

T i,i = δ
√

(Wc)i,i2
−F2

(
δ
√

(Wc)i,i

)
−αi (37)

such that the constraints (28) are satisfied. Moreover, it is
possible to build all the transformation matrices that meet the
constraints (28): let us consider an invertible matrix U ∈ Rn×n;
then, the transformation matrix T = UV with V diagonal
such that

V i,i = δ
√

(U−1WcU
−')i,i2

−F2

(
δ
√

(U−1WcU−")i,i

)
−αi

(38)
produces the relaxed L2-scaling.

Proof: F2 acts as a modulo operator. For x ∈ R, x̄
∆=

2F2(x)+a is such that 2a ! x̄ < 2a+1.
Since the constraints (28) are equal to

2αi ! δ
√

(Wc)i,i < 2αi+1 (39)

and T transforms (Wc)i,i into T−2
i,i (Wc)i,i, then T i,i has to be

of the form

δT−1
i,i

√
(Wc)i,i = 2F2

(
δ
√

(Wc)i,i

)
+αi . (40)

"
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TABLE I
ML2 -SENSITIVITIES FOR THE REALIZATIONS R1, R2 AND R3

Thus, the optimization problem is given by

Uopt = arg min
U invertible

V defined by (38)

ML2(UV ). (41)

These two ways of solving problem 3 are implemented in the
FWR toolbox1 for Matlab, with fminsearch, fmincon, and
fminunc functions, and they both give the same results with
similar numbers of iterations.

Of course, the use of matrices V γ and V , which are merely
used to eliminate the constraints and solve an unconstrained
minimization problem, increases the degree of nonlinearity for
the objective function to minimize. However, this seems not to
be a problem, since in our tests, the optimal realizations found
seem to be global optima.

VI. EXAMPLE

Let us consider the following state-space digital controller,
given in modal form2:

A=




0.3820 0 0
0 0.7964 0.5598
0 −0.5598 0.7964



 b=




0.5391
−0.8417
0.6232





c=(0.1664 0.1639 0.2047) d=0.0159 (42)

and its multiple equivalent (in infinite-precision) realizations:

1) R1 is the original realization given by (42).
2) R2 is the optimal L2-scaled realization (solution of prob-

lem 2). It is obtained with proposition 2 and a quasi-
Newton algorithm.

3) R3 is the optimal relaxed L2-scaled realization
(problem 3), with

max
u being a power of two and δ = 1.

It is obtained with proposition 4.

Table I gives the ML2 sensitivities of these different
realizations.

In this example, the relaxed L2-scaled realization R3

achieves lower sensitivity than the strict L2-scaled optimal re-
alization R2 while protecting implementation from overflows.
However, it is not always the case: if we consider the exam-
ple in [10], the optimal relaxed L2-scaled realization satisfies
(Wc)i,i = 1 and is then also a strict L2-scaled realization. This
depends on the diagonal terms of the controllability Gramians
of the (nonscaled) optimal realization.

It is also interesting to notice that a good estimation of
max
u

(if it is not a power of two) can allow achieving lower sensitivity
by moving the constraints (it could also be the case for the
example in [10]).

1Sources are available at http://fwrtoolbox.gforge.inria.fr/
2Due to lack of space, only four digits are given, but more may be required

to completely define the system.

VII. CONCLUSION

This brief has presented the L2-sensitivity minimization
problem and the associated L2-scaling constraints. These
constraints that prevent overflows have been considered
with concrete fixed-point implementation schemes. Novel
L2-dynamic-range constraints have been exhibited.

Even if the goal of this brief is not a detailed optimization
algorithm like in [10], two different means to solve the con-
strained optimization problem have been exhibited and applied
on a numerical example.

These relaxed constraints could also be very important for
some other realizations, like the δ-operator state space or the
ρ-direct Form II transposed [16]. For these realizations where
a parameter ∆ should be used to achieve the L2-scaling, a
relaxed-L2-scaling permits fixing this parameter as a power of
two to decrease the amount of computations.

To apply this work to other classical structures, it will be soon
extended to the specialized implicit framework [17] that allows
to encompass existing structures in an implicit state-space form.
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