
NEW L2-DYNAMIC-RANGE-SCALING CONSTRAINTS FOR LOW PARAMETRIC
SENSITIVITY REALIZATIONS

Thibault Hilaire

Vienna University of Technology, Austria
Institute of Communications and Radio-Frequency Engineering

thibault.hilaire@nt.tuwien.ac.at

ABSTRACT

This paper presents a new dynamic-range scaling for the implemen-
tation of filters/controllers in state-space form. Specific fixed-point
considerations allow us to relax the classical L2-scaling constraints
while still preserving the implementation from overflows. It gives
more degrees of freedom for the optimal L2-parametric sensitivity
problem. The underlying constrained problem is converted into an
unconstrained problem for which a solution can be provided. This
leads to realizations which are still scaled but less sensitive.

1. INTRODUCTION

The majority of signal processing (or control) systems is imple-
mented in digital general purpose processors, DSPs1, FPGAs2, etc.
Since these devices cannot compute with infinite precision and ap-
proximate real-number parameters with a finite binary representa-
tion, the numerical implementation of controllers (filters) leads to
deterioration in characteristics and performance. This has two sep-
arate origins, corresponding to the quantization of the embedded
coefficients and the roundoff errors occurring during the computa-
tions. They can be formalized as parametric errors and numerical
noises, respectively. The focus of this paper are parametric errors,
but one can refer to [3, 6, 10, 14] for roundoff noises.
It is also well known that these Finite Word Length (FWL) effects
depend on the structure of the realization. This motivates to inves-
tigate the coefficient sensitivity minimization problem. It has been
widely studied since Thiele published [16,17] and the definition of a
tractable input-output sensitivity norm (the L1/L2-sensitivity). This
work has been extended with a more natural and reasonable mea-
sure, the L2-sensitivity ( [3, 8]).
The dynamic-range-scaling constraints have been introduced in [11]
and [9] to prevent overflow and underflow during the evaluation of
the state-vector, and as well as the state and criteria normalization.
These constraints have to be considered in the L2-sensitivity mini-
mization problem, for which [7] proposes an efficient quasi-Newton
algorithm to solve it.

This paper investigates the L2-dynamic-range-scaling problem
by considering concrete fixed-point implementation of state-space
realizations. It reveals that the classical L2-scaling is only a suf-
ficient condition to prevent overflows and thus it can be slightly
relaxed in order to extend the degrees of freedom for the optimiza-
tion process. New relaxed-L2-dynamic-range-scalings are then pre-
sented with respect to the described computational scheme. Finally,
the L2-sensitivity minimization problem with relaxed L2-scaling
constraints is solved. A numerical example illustrates that the pro-
posed constraints can offer reduced L2-sensitivity with overflow
protection.

This work has been funded in parts by the NFN SISE project (National
Research Network ”Signal and Information Processing in Science and En-
gineering”).

1Digital Signal Processors
2Field Programmable Gate-Array

2. L2-SENSITIVITY ANALYSIS

Let (A,b,c,d) be a stable, controllable and observable linear dis-
crete time SISO3 state-space system, i.e.{

x(k +1) = Ax(k)+bu(k)
y(k) = cx(k)+du(k) (1)

whereA ∈Rn×n, b ∈Rn×1, c ∈R1×n and d ∈R. u(k) is the scalar
input, y(k) is the scalar output and x(k) ∈ Rn×1 is the state vector.
Its input-output relationship is given by the scalar transfer function
h : C→ C defined by:

h : z 7→ c(zIn−A)−1b+d. (2)

The quantization of the coefficients introduces some uncer-
tainly to A, b, c and d leading to A+∆A, b+∆b, c+∆c and
d + ∆d respectively. It is of interest to consider the sensitivity of
the transfer function with respect to the coefficients, based on the
following definitions.

Definition 1 (Transfer function sensitivity) Consider X ∈ Rm×n

a matrix and f : Rm×n → C a scalar complex function, differen-
tiable with respect to all the entries ofX .
The sensitivity of f with respect to X is defined by the matrix
SX ∈ Rm×n:

∂ f
∂X

, SX with (SX)i, j ,
∂ f

∂Xi, j
(3)

Definition 2 (Lp-Norm) Let H : C→ Ck×l be a function of the
scalar complex variable z. ‖H‖p is the Lp-norm ofH , defined by:

‖H‖p ,

(
1

2π

∫ 2π

0

∥∥∥H (
e jω
)∥∥∥p

F
dω

) 1
p

(4)

where ‖.‖F is the Froebenius norm.

Gevers and Li [3] have proposed the L2-sensitivity measure to
evaluate the coefficient roundoff errors. It is defined by

ML2 ,

∥∥∥∥ ∂h
∂A

∥∥∥∥2

2
+
∥∥∥∥ ∂h

∂b

∥∥∥∥2

2
+
∥∥∥∥∂h

∂c

∥∥∥∥2

2
+
∥∥∥∥ ∂h

∂d

∥∥∥∥2

2
(5)

and can be computed by ∂h
∂A

(z) =G>(z)F>(z), ∂h
∂b

(z) =G>(z),
∂h
∂c

(z) = F (z) and ∂h
∂d (z) = 1, with

F (z) , (zIn−A)−1b, G(z) , c(zIn−A)−1. (6)

This measure is an extension of the more tractable but less natural
L1/L2 sensitivity measure proposed by V. Tavşanoğlu and L. Thiele

[16] (
∥∥∥ ∂h

∂A

∥∥∥2

1
instead of

∥∥∥ ∂h
∂A

∥∥∥2

2
in (5)).

3Single Input Single Output



Applying a coordinate transformation, defined by x̄(k) ,
T−1x(k) to the state-space system (A,b,c,d), leads to a new
equivalent realization (T−1AT ,T−1b,cT ,d).

Since these two realizations are equivalent in infinite precision
but are no more equivalent in finite precision (fixed point arithmetic,
floating-point arithmetic, etc.), the L2-sensitivity then depends on
T , and is denoted ML2(T ).
In this case, it is natural to define the following problem:

Problem 1 (optimal L2-sensitivity problem) Considering a state-
space realization (A,b,c,d), the optimal L2-sensitivity problem
consists of finding the coordinate transformation Topt that mini-
mizes ML2 :

Topt = arg min
T invertible

ML2(T ). (7)

[3] shows that the problem has one unique solution. Hence, for
example, a gradient method can be used to solve it.

3. LP-DYNAMIC-RANGE SCALING

The Lp-dynamic-range-scaling constraints have been introduced by
Jackson in [11] and Hwang in [9]. It consists in scaling the state-
variable vector such that overflows or underflows during its evalua-
tion are prevented.

Definition 3 (Lp-scaling) A state-space realization (A,b,c, d) is
said to be Lp-scaled if the Lp-norms of the transfer functions from
the input to each state are set to 1, i.e.:∥∥∥e>i (zIn−A)−1b)

∥∥∥
p

= 1, ∀1 6 i 6 n (8)

where ei is the column vector of appropriate dimension and with all
elements being 0 except from the ith element which is 1.

Let
max
u denote the maximum value of the input u:

max
u , max

k∈N
|u(k)|. (9)

The L1-scaling guarantees that the dynamic of each state xi is lower
than

max
u , whereas the L2-scaling guarantees that the variance of

each state is unitary for a unit-variance centered white noise input.
L2-scaling doesn’t completely prevent overflow as does L1, but it is
less conservative and more realistic, so it is widely used [15].

Proposition 1 The L2-norms of the transfer functions from the in-
put to each state are given by∥∥∥e>i (zIn−A)−1b)

∥∥∥
2

=
√

(Wc)i,i (10)

where Wc is the controllability Gramian of the state-space system
(A,b,c, d). This matrix is the solution of the Lyapunov equation:

Wc =AWcA
>+bb>. (11)

Proof:
A classical result on L2-norm gives the L2-norm of a state-space
system H := (K,L,M ,N):

‖H‖2
2 = tr(NN>+MWcM

>) (12)

where tr(.) is the trace operator and Wc is the controllability
Gramian of the system.
This is here applied to the system (A,b,e>i ,).

Problem 2 (sensitivity problem with L2-scaling constraints)
The optimal L2-sensitivity problem with L2-norm dynamic-range-
scaling constraints can be formulated as the optimization problem
1, subject to the constraints

(Wc)i,i = 1, ∀1 6 i 6 n. (13)

This constrained problem can be transformed into a uncon-
strained problem, and an optimization algorithm can be used to
solve it [7].

4. FIXED-POINT IMPLEMENTATION

4.1 Fixed-point representation

In this paper, the notation (β ,γ) is used for the fixed-point represen-
tation of a variable or coefficient (2’s complement scheme), accord-
ing to Figure 1. β is the total wordlength of the representation in
bits, whereas γ is the wordlength of the fractional part (it determines
the position of the binary-point). They are fixed for each variable
(input, states, output) and each coefficient, and implicit (unlike the
floating-point representation). β and γ will be suffixed by the vari-
able/coefficient they refer to.

± 21 20 2−1... ...2β−γ−2

β − γ − 1

β

γ

2−γ

integer part fractional part

s

Figure 1: Fixed-point representation

To represent a value x without overflow, a fixed-point represen-
tation (βx,γx) may satisfy:

βx− γx−1 >
⌊

log2 |x|
⌋
+1 (14)

where the bac operation rounds a to the nearest integer less or equal
to a (for positive numbers bac is the integer part).

An important fixed-point issue is to find a valid fixed-point rep-
resentation, such that (14) is satisfied for all values which x can
assume during the execution of the algorithm.

4.2 State-overflow

Definition 4 (State-overflow) The overflow of the state variables
(xi)16i6n can be strictly avoided if all the values xi(k) are within
the range allowed by the fixed-point representations, i.e. (1 6 i 6 n)

∀k, −2βxi−γxi−1 6 xi(k) < 2βxi−γxi−1. (15)

The overflows are avoided if the binary-point position of each state
is carefully chosen, such that

γxi = βxi −2−
⌊

log2
max
xi

⌋
, (16)

where
max
xi is the maximum magnitude for the ith state:

max
xi , max

k∈N
|xi(k)| . (17)

Remark 1 At least, γxi should satisfy γxi 6 βxi − 2−
⌊

log2
max
xi

⌋
,

but the greater γxi is, the more accurate is the fixed-point format.



However only upper bounds can be computed. A first upper
bound

up
xi can be obtained by an L1-norm:

up
xi =

∥∥∥e>i (zIn−A)−1b
∥∥∥

1

max
u , (18)

and a second one can be estimated by an L2-norm [15]:

up
xi ' δ

∥∥∥e>i (zIn−A)−1b
∥∥∥

2

max
u . (19)

Here, the parameter δ can be interpreted as a representation of the
number of standard deviations of xi, if the input is unit-variance
white centered noise (δ > 1). Since the L2-norm in (19) doesn’t
give a strict bound (contrary to (18)), δ can be seen as a safety pa-
rameter [15].
Finally, these upper bounds are used to define the binary-point po-
sitions:

γxi = βxi −2−
⌊

log2
up
xi

⌋
. (20)

In general, the L1 and L2 estimations of
up
xi approximately leads

to the same binary-point position, with 1 or 2 bits deviation. How-
ever, since the L2-norm is more tractable (with proposition 1) and
the L1-norm too conservative (

max
xi �

up
xi), in practice (19) is used,

with δ = 1. After implementation, a simulation-based estimation
like in [1] or [12] can also be used to verify in situ the peak values
and the binary point positions, according to the inputs.

4.3 Computational scheme
In order to implement a realization without overflows, two equiva-
lent choices are possible:
• set the binary-point position for each state, according to (20), to

make sure that the fixed-point representation of the states avoids
state-overflows;

• or define a binary-point position for each state, and apply a scal-
ing to them in order to adapt the peak values of each state to the
chosen binary-point position.

Here, we here focus on the 2nd choice, referring to dynamic-range-
scaling constraints.

Let us consider in detail the fixed-point implementation of the
system given in (1). It leads to (n + 1) scalar products to be evalu-
ated, of the form:

S =
N

∑
i=1
piqi (21)

where the (pi) are given coefficients and (qi) are bounded variables.
To avoid bit-shift operations between each addition in the evaluation
of eq. (21), the binary-point positions of each partial product of the
sum should be equal.
Then, two computational schemes are possible: the Roundoff After
Multiplication scheme, where shifts are added after each product to
align the operands of the sum (piqi is implemented as (p′i ∗q′i) >>
di) and the Roundoff Before Multiplication scheme, where the re-
quired shifts are reported into the coefficients (piqi is implemented
as (p′i >> di)∗q′i). See Figure 2.

+

+×

×

× +

p′
1

p′
i

q′
i

q′
1

>>d1

>>di

Figure 2: Scalar product with Roundoff After Multiplication scheme

The main idea of the scaling is to scale each variable (qi) such
that the shifts (di = 0, ∀i) are prevented. In fixed-point represen-
tation, the scaling only implies that all the (qi) have a common

format, and so have the (pi). See [2, 6] for more details on im-
plementation schemes.

Applied to the state-space realization (1), this yields that all the
states must have the same binary-point position as the input and the
coefficientsA, b, c and d.
Besides, since they have the same fractional part γ , their quan-
tization’s errors ∆A, ∆b, ∆c and ∆d have the same magni-
tude 2−γ−1, and the L2-sensitivity measure represents a meaningful
bound on the transfer function error ∆h (considering that h is shifted
in h+∆h by the coefficients’ quantization):

‖∆h‖2
2 6

∥∥∥∥ ∂h
∂A
×∆A

∥∥∥∥2

2
+
∥∥∥∥ ∂h

∂b
×∆b

∥∥∥∥2

2

+
∥∥∥∥∂h

∂c
×∆c

∥∥∥∥2

2
+
∥∥∥∥ ∂h

∂d
×∆d

∥∥∥∥2

2
(22)

6 2−2(γ+1)ML2 (23)

4.4 New L2-scaling constraints
Taken this into consideration, the overflows will be avoided by set-
ting the same binary-point position for the states and the input, and
by applying an appropriate scaling on the states such that the con-
straints (16) are satisfied.
Compared to strict L2-scaling where the states must satisfy

max
xi =

max
u , here, the constraints are relaxed (but still restrictive enough to

guarantee the protection against overflow) and replaced by γxi = γu.

Proposition 2 (relaxed-L2-scaling constraints) Since the input
and the states may have the same binary-point position, the L2-
scaling constraints (13) are now transformed into

22αi

δ 2 6 (Wc)i,i < 4
22αi

δ 2 , ∀1 6 i 6 n (24)

where
αi , βxi −βu−F2

(
max
u
)

(25)

and F2(x) is defined as the fractional value of log2(x):

F2(x) , log2(x)−blog2(x)c (26)
Proof:
The binary-point position of the input is set to γu = βu − 2−⌊

log2
max
u
⌋

. Hence, with (20), the constraints γu = γxi lead to

βu−
⌊

log2
max
u
⌋

= βxi −
⌊

log2

(
δ

∥∥∥e>i (zIn−A)−1b
∥∥∥

2

max
u
)⌋

and ⌊
log2

(
δ

√
(Wc)i,i

)
+F2

(
max
u
)⌋

= βxi −βu (27)

And finally

2αi 6 δ

√
(Wc)i,i < 2αi+1 (28)

Remark 2 For microcontroller or DSP implementations (contrary
to FPGA or some ASIC implementations), the wordlength of all
variables is most of the time equal, i.e. βu = βxi (1 6 i 6 n). δ is
set to unity (as for classical L2-scaling constraints).

In best case,
max
u is equal to a power of 2 (2p, p ∈ Z), and the

relaxed-L2-scaling constraints (24) become:

1 6 (Wc)i,i < 4, ∀1 6 i 6 n, (29)



and in worst case,
max
u is equal to the representable value immedi-

ately lower than a power of 2 (2p− 2βu−2−p), and the constraints
become:

1
4

6 (Wc)i,i < 1, ∀1 6 i 6 n (30)

(in the first case, p+1 bits are used for the integer part of the states,
whereas p bits only are used in the second case).

It is important to remark that these new constraints allow more
freedom for the scaling and introduce a new degree of freedom for
the search for optimal realizations. Even though not considered in
this paper, moreover it could give more freedom for the minimiza-
tion of the roundoff noise power.

5. OPTIMAL L2-SENSITIVITY REALIZATION WITH
RELAXED L2-NORM DYNAMIC-RANGE-SCALING

CONSTRAINTS

Then, these relaxed constraints can be applied to a new sensitivity
problem:

Problem 3 (relaxed sensitivity problem) The optimal L2-
sensitivity problem with relaxed L2-norm dynamic-range-scaling
constraints can be expressed in the form of the constrained problem
2 subject to constraints in (24).

This constrained problem can be solved by scaling the system
after each transformation in order to ensure that the constraints are
met:

Proposition 3 (a posteriori relaxed scaling) Considering a state-
space realization, it is possible to a posteriori scale it with a di-
agonal transformation matrix T given by

Ti,i = δ

√
(Wc)i,i2

−F2(δ
√

(Wc)i,i)−αi , (31)

such that the constraints (24) are satisfied. Moreover, it is possible
to build all the transformation matrices that meet the constraints
(24): Let us consider an invertible matrixU ∈Rn×n, then the trans-
formation matrix T =UV with V diagonal such that:

Vi,i = δ

√(
U−1WcU−>

)
i,i2
−F2(δ

√
(U−1WcU−>)i,i)−αi (32)

produces the relaxed-L2-scaling.
Proof:
F2 acts as a modulo operator. For x ∈ R, x̄ , 2F2(x)+a is such that
2a 6 x̄ < 2a+1.
Since the constraints (24) are equal to

2αi 6 δ

√
(Wc)i,i < 2αi+1 (33)

and T transforms (Wc)i,i into T−2
i,i (Wc)i,i, then Ti,i has to be of the

form:
δT−1

i,i

√
(Wc)i,i = 2F2(δ

√
(Wc)i,i)+αi (34)

Thus, the optimization problem is given by

Uopt = arg min
U invertible

V defined by (32)

ML2(UV ). (35)

This was implemented in the FWR toolbox4 for Matlab, with
fminsearch, and fminunc functions, and they both give same
results with similar numbers of iterations.
Of course, the use of the matrice V, that is merely used to eliminate
the constraints and solve an unconstrained minimization problem,
increases the degree of non-linearity for the objective function to
minimize. However, this seems not to be a problem, since in our
tests, the optimal realizations found seem to be global optima.

4sources available at http://fwrtoolbox.gforge.inria.fr/

6. EXAMPLE

Let us consider the following digital filter, given by its transfer func-
tion5:

H(z) =
4.297e−3z4−8.595e−3z2 +4.297e−3
z4−3.803z3 +5.550z2−3.678z+0.9355

(36)

and its multiple equivalent (in infinite precision) realizations:
• R1 is the Direct Form II given by (37).
• R2 is the optimal L2-scaled realization (solution of problem 2).

The numerical values are given by (38).
• R3 is the optimal relaxed-L2-scaled realization (problem 3),

with
max
u a power of 2, and δ = 1. It is obtained with propo-

sition 3 . The numerical values are given by (39).
The balanced realization (known to be close to the unscaled

ML2 -optimal realization) was chosen as the starting point for the
optimization. The numerical results are presented in the appendix
and the pseudo-code associated to the realization R3 is presented
in algorithm 1 (16 bits are considered for the input, output, states
and coefficients, 32 bits for the accumulator (no guard bits), and
max
u = 16).

The following table gives the ML2 sensitivities of these different
realizations:

realization ML2 sensitivity
R1 1.690e+09
R2 5247.9
R3 5222.1

In this example, the relaxed L2-scaled realization R3 achieves
lower sensitivity than the strict L2-scaled optimal realization R2
while protecting implementation from overflows.
But it is not always the case : if we consider the example in [7],
the optimal relaxed-L2-scaled realization satisfies (Wc)i,i = 1 and is
then also a strict L2-scaled realization. This depends on the diagonal
terms of the controllability Gramians of the (non scaled) optimal
realization.
It is also interesting to notice that a good estimation of

max
u (if it is

not a power of 2) can allow to achieve lower sensitivity by moving
the constraints (it could also be the case for the example in [7]).

7. CONCLUSION

This paper has presented the L2-sensitivity minimization prob-
lem and the associated L2-scaling constraints. These constraints
that prevent from overflows have been considered with concrete
fixed-point implementation schemes. Novel L2-dynamic-range con-
straints have been exhibited.

Even if the goal of this paper is not a detailed optimization algo-
rithm like in [7], a proposition to solve the constrained optimization
problem has been exhibited and applied on a numerical example.

These relaxed constraints could also be very important for some
other realizations, like δ -operator state-space, the ρ-Direct Form
II transposed [13] and also classical filtering structures. For these
realizations where a parameter ∆ should be used to achieve the
L2-scaling, a relaxed-L2-scaling permits to fix this parameter as a
power of 2, in order to decrease the amount of computations.
To apply this work to other classical structures, it will be soon ex-
tended to the Specialized Implicit Framework [5] that allows to en-
compass existing structures in an implicit state-space form.

REFERENCES

[1] P. Belanovic and M. Rupp. Automated floating-point to fixed-
point conversion with the fixify environment. Rapid System
Prototyping, 2005. (RSP 2005). The 16th IEEE International
Workshop on, pages 172–178, June 2005.

5Due to a lack of space, only 4 digits are given, but more may be required
to completely define the system.



[2] G. Constantinides, P. Cheung, and W. Luk. Synthesis And Op-
timization Of DSP Algorithms. Kluwer Academic Publishers,
2004.

[3] M. Gevers and G. Li. Parametrizations in Control, Estimation
and Filtering Probems. Springer-Verlag, 1993.

[4] T. Hilaire and P. Chevrel. On the compact formulation of the
derivation of a transfer matrix with respect to another matrix.
Technical Report RR-6760, INRIA, 2008.

[5] T. Hilaire, P. Chevrel, and J. Whidborne. A unifying frame-
work for finite wordlength realizations. IEEE Trans. on Cir-
cuits and Systems, 8(54), August 2007.

[6] T. Hilaire, D. Ménard, and O. Sentieys. Bit accurate roundoff
noise analysis of fixed-point linear controllers. In Proc. IEEE
International Symposium on Computer-Aided Control System
Design (CACSD’08), September 2008.

[7] T. Hinamoto, H. Ohnishi, and W.-S. Lu. Minimization of l2
sensitivity of one- and two dimensional state-space digital fil-
ters subject to l2-dynamic-range-scaling constraints. IEEE
Trans. on Circuits and Systems-II, 52(10):641–645, October
2005.

[8] T. Hinamoto and Y. Sugie. L2-sensitivity analysis and mini-
mization of 2-d separable-denominator state-space digital fil-
ters. Signal Processing, IEEE Transactions on, 50(12):3107–
3114, Dec 2002.

[9] S. Hwang. Dynamic range constraint in state-space digital fil-
tering. In IEEE Trans. on Acoustics, Speech and Signal Pro-
cessing, volume 23, pages 591–593, 1975.

[10] S. Hwang. Minimum uncorrelated unit noise in state-space
digital filtering. IEEE Trans. on Acoust., Speech, and Signal
Processing, 25(4):273–281, August 1977.

[11] L. Jackson. Roundoff-noise analysis for fixed-point digital fil-
ters realized in cascade or parallel form. Audio and Electroa-
coustics, IEEE Transactions on, 18(2):107–122, June 1970.

[12] S. Kim, K. Kum, and W. Sung. Fixed-point optimization util-
ity for C and C++ based digital signal processing programs.
IEEE Transactions on Circuits and Systems, 45(11):1455–
1464, November 1998.

[13] G. Li and Z. Zhao. On the generalized DFIIt structure and its
state-space realization in digital filter implementation. IEEE
Trans. on Circuits and Systems, 51(4):769–778, April 2004.

[14] C. Mullis and R. Roberts. Synthesis of minimum roundoff
noise fixed point digital filters. In IEEE Transactions on Cir-
cuits and Systems, volume CAS-23, September 1976.

[15] K. Parhi. VLSI Digital Signal Processing Systems: Design and
Implementation of Digital Controllers. Number ISBN 0-471-
24186-5. John Wiley & Sons, 1999.

[16] V. Tavşanoğlu and L. Thiele. Optimal design of state-space
digital filters by simultaneous minimization of sensibility and
roundoff noise. In IEEE Trans. on Acoustics, Speech and Sig-
nal Processing, volume CAS-31, October 1984.

[17] L. Thiele. Design of sensitivity and round-off noise opti-
mal state-space discrete systems. Int. J. Circuit Theory Appl.,
12:39–46, 1984.

A. NUMERICAL RESULTS

A1 =


3.8031 −1.3875 0.9196 −0.4678

4 0 0 0
0 1 0 0
0 0 0.5 0

 , b1 =


0.1250

0
0
0

 ,

c1 =
(
0.1307 −0.0649 0.0316 0.0011

)
, d1 = 4.2974e−3

(37)

A2 =


0.9386 −0.2477 −0.0427 0.0077
0.2525 0.9675 −0.0010 −0.0003
0.0228 −0.0031 0.9301 −0.2524
0.0039 −3.071e−05 0.2517 0.9669

 , b2 =


−0.0652
−0.0193
0.3130
0.0471

 ,

c2 =
(
−1.1151 0.2002 −0.1789 0.0729

)
, d2 = 4.2974e−3

(38)

A3 =


0.9300 −0.2504 0.0290 −0.0030
0.2528 0.9671 0.0027 −0.0059
−0.0483 0.0091 0.9385 −0.2466
0.0001 0.0056 0.2527 0.9674

 , b3 =


0.6289
0.0665
−0.1326
−0.0440

 ,

c3 =
(
−0.0872 0.0335 −0.5567 0.1104

)
, d3 = 4.2974e−3

(39)

Input: u: 16 bits integer
Output: y: 16 bits integer
Data: xn,xnp: array [1..4] of 16 bits integers
Data: Acc: 32 bits integer
begin

// Intermediate variables
Acc← (xn(1)∗31209);
Acc← Acc+(xn(2)∗−8303);
Acc← Acc+(xn(3)∗−600);
Acc← Acc+(xn(4)∗78);
Acc← Acc+(u∗−806);
xnp(1)← Acc >> 15;
Acc← (xn(1)∗8304);
Acc← Acc+(xn(2)∗31690);
Acc← Acc+(xn(3)∗−77);
Acc← Acc+(xn(4)∗10);
Acc← Acc+(u∗−104);
xnp(2)← Acc >> 15;
Acc← (xn(1)∗2398);
Acc← Acc+(xn(2)∗−315);
Acc← Acc+(xn(3)∗30009);
Acc← Acc+(xn(4)∗−8149);
Acc← Acc+(u∗1523);
xnp(3)← Acc >> 15;
Acc← (xn(1)∗313);
Acc← Acc+(xn(2)∗−41);
Acc← Acc+(xn(3)∗8147);
Acc← Acc+(xn(4)∗31711);
Acc← Acc+(u∗198);
xnp(4)← Acc >> 15;
// Outputs
Acc← (xn(1)∗−25782);
Acc← Acc+(xn(2)∗3381);
Acc← Acc+(xn(3)∗−12182);
Acc← Acc+(xn(4)∗1575);
Acc← Acc+(u∗18);
y← Acc >> 15;
// Permutations
xn← xnp;

end
Algorithm 1: Numerical fixed-point algorithm of realization R3


