
Finite Wordlength Realizations
Toolbox User’s Guide

v 0.99

http://fwrtoolbox.gforge.inria.fr/

http://fwrtoolbox.gforge.inria.fr/

2

Contents

1 Installation 9

2 Introduction to FWL problem 9

3 A unifying framework 10
3.1 The Specialized Implicit Framework (SIF) 10
3.2 definitions . 12
3.3 Examples . 13

3.3.1 Classical state-space . 13
3.3.2 State-space with δ operator 14
3.3.3 Cascade decomposition 14
3.3.4 Others forms . 15

3.4 Equivalent classes . 15
3.5 Finite Wordlength measures . 16

3.5.1 Coefficient’s quantization 16
3.5.2 Input-Output sensitivity 17
3.5.3 Pole sensitivity . 17
3.5.4 Output roundoff noise . 18
3.5.5 Closed-loop measures . 19

4 The optimal realization problem 20

5 Tutorial 21
5.1 First example . 21

6 The classes 23
6.1 The FWR class . 24

6.1.1 Fixed-Point Implementation Scheme 25
6.1.2 Methods . 26

6.2 The FWS class . 27
6.2.1 UYWfun function . 29
6.2.2 Rfun function . 29
6.2.3 Methods . 29

7 FWR Toolbox reference 31
7.1 create realizations and structurations 31

7.1.1 DFIq2FWR . 31
7.1.2 FFT2FWR . 33
7.1.3 implicitSS2FWS . 36
7.1.4 Modaldelta2FWR . 37
7.1.5 Modalrho2FWR . 38
7.1.6 Modalrho2FWS . 39
7.1.7 Observer2FWR . 40
7.1.8 OpModalrho2FWR . 41
7.1.9 rhoDFIIt2FWR . 42

3

7.1.10 rhoDFIIt2FWS . 44
7.1.11 SS2FWR . 45
7.1.12 SS2FWS . 45
7.1.13 SSdelta2FWR . 46
7.1.14 SSdelta2FWS . 47
7.1.15 SSrho2FWR . 48
7.1.16 SSrho2FWS . 49

7.2 Private functions . 50
7.2.1 complexFFT . 50
7.2.2 strideM . 51
7.2.3 twiddleM . 51

7.3 FWR class methods . 53
7.3.1 algorithmCfloat . 54
7.3.2 algorithmLaTeX . 55
7.3.3 computationalCost . 56
7.3.4 computeW . 57
7.3.5 display . 58
7.3.6 double . 59
7.3.7 FWR . 59
7.3.8 FWRmat2LaTeX . 60
7.3.9 get . 61
7.3.10 implementLaTeX . 61
7.3.11 implementMATLAB . 63
7.3.12 implementVHDL . 65
7.3.13 l2scaling . 67
7.3.14 MsensH . 68
7.3.15 MsensH cl . 70
7.3.16 MsensPole . 71
7.3.17 MsensPole cl . 73
7.3.18 Mstability . 74
7.3.19 mtimes . 75
7.3.20 ONP . 76
7.3.21 plus . 79
7.3.22 quantized . 80
7.3.23 realize . 81
7.3.24 relaxedl2scaling . 82
7.3.25 RNG . 83
7.3.26 RNG cl . 84
7.3.27 set . 85
7.3.28 setFPIS . 86
7.3.29 simplify . 89
7.3.30 size . 91
7.3.31 ss . 92
7.3.32 subsasgn . 92
7.3.33 subsref . 93
7.3.34 tf . 94

4

7.3.35 TradeOffMeasure cl . 94
7.3.36 transform . 95

7.4 FWR private functions . 95
7.4.1 compute rZ . 96
7.4.2 computeAZBZCZDZWcWo . 97
7.4.3 computeJtoS . 97
7.4.4 computelmnp . 98
7.4.5 computeZ . 98
7.4.6 deigdZ . 99
7.4.7 mylyap . 100
7.4.8 scalprodCfloat . 100
7.4.9 scalprodMATLAB . 101
7.4.10 scalprodVHDL . 102
7.4.11 w prod norm . 102
7.4.12 w prod norm SISO . 103

7.5 FWS class methods . 105
7.5.1 display . 105
7.5.2 FWS . 106
7.5.3 genCostFunction . 108
7.5.4 get . 109
7.5.5 getValues . 109
7.5.6 MsensPole . 110
7.5.7 MsensPole cl . 111
7.5.8 Mstability . 112
7.5.9 optim . 113
7.5.10 RNG . 115
7.5.11 RNG cl . 115
7.5.12 set . 116
7.5.13 setFPIS . 117
7.5.14 ss . 117
7.5.15 subsasgn . 118
7.5.16 subsref . 119
7.5.17 tf . 119

7.6 FWS private functions . 120
7.6.1 genCostFunctionR . 120
7.6.2 genCostFunctionS . 121
7.6.3 myoptions asamin . 122
7.6.4 updateR . 122

8 Bibliography 123

5

Abstract

The FWR Toolbox is a MATLAB toolbox used to analyze the Finite Word
Length effects of linear time-invariant digital filters/controllers implementations.
When digital filter/controller are implemented in computing machines (micro-
controller, DSP, FPGA, etc.) with finite precision, a degradation occurs. It
comes from:

• the addition of roundoff noise after each arithmetic operation,

• the rounding of the embedded parameters.

The FWR Toolbox provides a general description of any possible realization
(direct form, state-space, δ or shift operator, observer-state-feedback, cascad
decomposition, etc...) in a form that allows a straightforward analysis of the
FWL effects. Several tools are provided to compute open-loop/closed-loop sen-
sitivity, related stability measure, roundoff noise gain, ..., and to find optimal
realizations, according to these criteria. It is also possible to generate fixed-point
code (C code, VHDL, ...).

6

License

Copyright T. Hilaire (thibault.hilaire@nt.tuwien.ac.at), Institute of Com-
munications and Radio-Frequency Engineering, Vienna University of Technol-
ogy, Austria.

This software is governed by the CeCILL-C license under French law and
abides by the rules of distribution of free software. You can use, modify and/ or
redistribute the software under the terms of the CeCILL-C license as circulated
by CEA, CNRS and INRIA at the following URL http://www.cecill.info.

As a counterpart to the access to the source code and rights to copy, modify
and redistribute granted by the license, users are provided only with a limited
warranty and the software’s author, the holder of the economic rights, and the
successive licensors have only limited liability.
In this respect, the user’s attention is drawn to the risks associated with loading,
using, modifying and/or developing or reproducing the software by the user in
light of its specific status of free software, that may mean that it is complicated
to manipulate, and that also therefore means that it is reserved for developers
and experienced professionals having in-depth computer knowledge. Users are
therefore encouraged to load and test the software’s suitability as regards their
requirements in conditions enabling the security of their systems and/or data
to be ensured and, more generally, to use and operate it in the same conditions
as regards security.

The fact that you are presently reading this means that you have had knowl-
edge of the CeCILL-C license and that you accept its terms. A copy of the
CeCILL-C license is given in the COPYING file of the distribution.

This product could include software (ASA) developed by Lester Ingber and other
contributors : http://www.ingber.com/.
This product could include software (Asamin) developed by Shinichi Sakata :
http://www.econ.lsa.umich.edu/~sakata/software.

Authors

• Thibault HILAIRE (main contributor):
thibault.hilaire@nt.tuwien.ac.at, Institute of Communications and
Radio-Frequency Engineering, Vienna University of Technology, Austria.

• Yu FENG:
yu.feng@emn.fr, École des Mines de Nantes, France.

Acknowledgment

This toolbox is based on

7

mailto:thibault.hilaire@nt.tuwien.ac.at
http://www.cecill.info
http://www.ingber.com/
http://www.econ.lsa.umich.edu/~sakata/software
mailto:thibault.hilaire@nt.tuwien.ac.at
mailto:yu.feng@emn.fr

• the work done during Thibault Hilaire’s PhD thesis, (Philippe Chevrel
and Yvon Trinquet as advisors) with the IRCCyN Lab (Institut de
Recherche en Communication et en Cybernétique de Nantes, France) and
PSA Peugeot-Citroën

• the work done at IRISA Lab (nstitut de Recherche en Informatique et
Systèmes Aléatoires, France) in the Cairn (ex-R2D2) project.

• the work done by Yu Feng during his Master’s thesis at IRCCyN Lab.

This toolbox is now maintained (and still enriched) during my postdoc position
at the Institute of Communications and Radio-Frequency Engineering, Vienna
University of Technology, Austria.

The logo comes from http://environnement.ecoles.free.fr.
The authors would like to thank people who help us for this toolbox, directly

or indirectly:

• Philippe Chevrel – IRCCyN Lab and École des Mines de Nantes, France

• Olivier Sentieys, Daniel Ménard – INRIA-IRISA Cairn Team and Uni-
versité de Rennes 1, France

• James Whidborne – Department of Aerospace Science, Cranfield Uni-
versity, UK

8

http://environnement.ecoles.free.fr

1 Installation

Instructions for installing the FWR Toolbox can be found in the section entitled
Installing Toolboxes in the computer specific section of the MATLAB user’s
guide.
We recommend that you locate the files from this toolbox in a directory named
FWRToolbox of the toolbox directory and add it in the MATLAB path.

This toolbox may require the Adaptative Simulating Annealing (ASA) soft-
ware (http://www.ingber.com/) and its Matlab’s gateway (Asamin http://
www.econ.ubc.ca/ssakata/public_html/software) in order to find optimal
realization with the global optimization algorithm ASA.

The latest version of the toolbox can be download with the anonymous Sub-
version access with the following command (or with your favorite SVN client):

svn checkout svn://scm.gforge.inria.fr/svn/fwrtoolbox

Warning : the Control System Toolbox is required in order to use the
FWR Toolbox.

2 Introduction to FWL problem

When digital filters are implemented, they are implemented with finite precision
due to the finite wordlength (FWL) of the representation of numbers within the
computing machine. There are two FWL effects. The first is the addition of
noise into the system resulting from the rounding of variables before and after
each arithmetic operation - the “round-off noise”. The second is the degradation
in the performance and/or the stability resulting from rounding of the filter
coefficients - the “coefficient sensitivity”. The FWL problem is hence to analyze
the effects to ensure that they do not cause significant deterioration in the
performance of an implemented filter. The effects are obviously dependent upon
the chosen wordlength and on the chosen arithmetic format (floating-point,
fixed-point, etc.). Slightly less obvious is the fact that the FWL effects are
very dependent upon the particular realization, (direct form, cascade, etc.), and
upon the chosen operator (shift operator, δ operator, etc.). Thus in seeking to
alleviate the FWL effects, the realization must also be considered.

The FWL effects have been studied for many years. Although many of the
early works were motivated by problems in control systems [3, 45], the analysis of
the effects were often considered in the open loop. See [35] for a comprehensive
review of early work. Further reviews can be found in [52, 9, 26]. There has
also been a large amount of work that considers the problem of round-off noise
(e.g. [43, 42, 23]).

Early consideration of the transfer function sensitivity to rounding errors
in the coefficients can be found in [29, 1]. The work of Thiele [46, 47, 48] is
particularly important in defining a norm on the input-output sensitivity that
is tractable. This sensitivity measure provides the foundation for much of the

9

http://www.ingber.com/
http://www.econ.ubc.ca/ssakata/public_html/software
http://www.econ.ubc.ca/ssakata/public_html/software

subsequent work. Solutions for other similar measures can be found in [9, 55]
and further developed in, for example, [33, 54, 22]. A related measure using
a statistical analysis of the input-output sensitivity has been developed [27].
An extension to the multivariable system case is provided in [37]. The closed-
loop control case has also been considered, for example in [38]. Methods for
the simultaneous minimization of a sensitivity measure with round-off noise [36]
and subject to scaling requirements [21] have also been developed recently.

The sensitivity of the poles (and zeros) is also a commonly used measure of
the coefficient rounding effect. An early analysis appears in [28]. Mantey [39]
showed that the poles/eigenvalues are dependent on the state-space realization.
It is well-known that an eigenvalue sensitivity is minimized if the system is nor-
mal [44]. However Gevers and Li [9] subsequently determined the realization
that would minimize a pole sensitivity measure combined with a zero sensi-
tivity measure proposed in [51]. Much subsequent work (see [32, 50, 53, 30],
for example) has considered various similar eigenvalue sensitivity measures for
closed-loop control systems.

Most of the significant results have expressed the filter in the state space
form. Although most realizations can be transformed into the state-
space form, this form is not completely general and has several lim-
itations. Firstly, the analysis of the rounding effect of a specific coefficient in
a particular realization form can become very difficult after transformation to
the state space form. Secondly, many realization forms require the computa-
tion of intermediate variables that cannot be expressed in the state-space form.
Furthermore, the state space form is specific to the chosen operator. In reality
all implementable operators are actually implemented using the shift operator.
For example, a realization expressed in the form of a δ-operator is actually im-
plemented using a shift operator in combination with an intermediate variable.

Thus a description that includes intermediate variables is required. The
FWR Toolbox proposes a particular implicit state-space description that is not
subject to these limitations. The proposed specialized implicit form provides a
generalized description of any realization in a form that allows a straightforward
analysis of the FWL effects as will be shown in section 3. The description is
macroscopic in that it does not require coding details and is platform indepen-
dent but gives a direct relationship between the description and the implemen-
tation algorithm. Note that the idea of representing the intermediate variables
in the description has been considered previously [5] (see also [4, 41]), but the
description form is less general than the implicit form considered in this paper.
For example, δ-realizations cannot be described using this form.

3 A unifying framework

3.1 The Specialized Implicit Framework (SIF)

To show the utility of the implicit realization, we consider an example of the
implementation of a δ-operator state-space realization. It is well-known [9,

10

40, 10] that the δ-operator is numerically superior to the usual shift operator
generally resulting in less sensitive implementations with less rounding noise.

For a realization expressed with the δ-operator, the input/output relation is{
δ[X(k)] = AδX(k) +BδU(k)
Y (k) = CδX(k) +DδU(k) (1)

with δ = q−1
∆ , where ∆ is a strictly positive constant and q is the delay operator

[9]. This is equivalent, in infinite precision, to the classical state-space realization{
q[X(k)] = AqX(k) +BqU(k)
Y (k) = CqX(k) +DqU(k) (2)

with Aq = ∆Aδ + I, Bq = ∆Bδ, Cq = Cδ and Dq = Dδ.
With these two equivalent realizations, the parametrization is different, there-

fore when the parameters are subjected to FWL rounding, the two realizations
are no longer equivalent, and the impact of the quantization is different. In addi-
tion, in order to implement the δ-operator, intermediate variables are necessary.
These are also subject to FWL quantization. So the following algorithm

T ← AδX(k) +BδU(k)
X(k + 1)← X(k) + ∆T (3)

Y (k)← CδX(k) +DδU(k)

implements (1) where T is an intermediate variable vector.
There are many other possible implementation forms, such as direct form I

or II, cascade/parallel decomposition, lattice filters, mixed q/δ, etc., and many
of these also require intermediate variables. In order to consider all of them
within a general unifying framework, we propose a description, in a single equa-
tion, of the filter implementation. The equation provides an explicit description
of the parametrization, and allows the analysis of the FWL effects, but is still a
macroscopic description. Furthermore, the description is given within a formal-
ism such that the description takes the form of an implicit state-space system.
This specialized implicit framework (SIF) is given by J 0 0

−K In 0
−L 0 Ip

T (k + 1)
X(k + 1)
Y (k)

=

0 M N
0 P Q
0 R S

T (k)
X(k)
U(k)

 (4)

where

• J ∈ Rl×l, K ∈ Rn×l, L ∈ Rp×l, M ∈ Rl×n, N ∈ Rl×m, P ∈ Rn×n,
Q ∈ Rn×m, R ∈ Rp×n, S ∈ Rp×m, T (k) ∈ Rl, X(k) ∈ Rn, U(k) ∈ Rm and
Y (k) ∈ Rp,

• matrix J is lower triangular with 1’s on the diagonal, i.e.

J =


1 0 . . . 0
? 1 0
...

. . .
...

? ? . . . 1

 , (5)

11

• T (k + 1) is the intermediate variable in the calculations of step k (the
column of 0’s in the second matrix shows that T (k) is not used for the
calculation at step k – this characterizes the concept of an intermediate
variable),

• X(k + 1) is the stored state-vector (X(k) is effectively stored from one
step to the next, in order to compute X(k + 1) at step k).

T (k + 1) and X(k + 1) form the descriptor-vector: X(k + 1) is stored from one
step to the next, while T (k + 1) is computed and used within one time step.

It is implicitly assumed that the computations associated with the realization
(4) are executed in row order giving the following algorithm:

[i] JT (k + 1)←MX(k) +NU(k)
[ii] X(k + 1)← KT (k + 1) + PX(k) +QU(k)
[iii] Y (k)← LT (k + 1) +RX(k) + SU(k)

Note that in practice, steps [ii] and [iii] could be exchanged to reduce the com-
putational delay. Also note that because the computations are executed in row
order and J is lower triangular with 1’s on the diagonal, there is no need to
compute J−1.

Equation (4) is equivalent in infinite precision to the classical state-space
form T (k + 1)

X(k + 1)
Y (k)

 =

 0 J−1M J−1N
0 AZ BZ
0 CZ DZ

T (k)
X(k)
U(k)

 (6)

with AZ ∈ Rn×n, BZ ∈ Rn×m, CZ ∈ Rp×n and DZ ∈ Rp×m where

AZ = KJ−1M + P, BZ = KJ−1N +Q, (7)

CZ = LJ−1M +R, DZ = LJ−1N + S. (8)

Note that (6) corresponds to a different parametrization than (4). The
system transfer function is given by

H(z) = CZ(zIn −AZ)−1BZ +DZ . (9)

3.2 definitions

To complete the framework, the following definitions are required.

Definition 1 A realization, R, is defined by the specific set of matrices J , K,
L, M , N , P , Q, R and S used to describe a realization with the implicit form
of (4) :

R :, (J,K,L,M,N, P,Q,R, S). (10)

12

Remark 1 R can also be defined by the matrix Z ∈ R(l+n+p)×(l+n+m)

Z ,

−J M N
K P Q
L R S

 (11)

and the dimensions l, m, n and p, so R could be defined by R := (Z, l,m, n, p).

Definition 2 RH denotes the set of realizations with transfer function H. These
realizations are said to be equivalent.

In order to encompass realizations with some special structure (q-operator
state-space, δ-operator state-space, direct form, cascade, lattice filters, etc.), we
define a set of realizations that possess a particular structure.

Definition 3 A structuration1 S is a set of realizations having a common
structure: some coefficients or some dimensions are fixed a priori.

Some examples of common structurations are given in the next section.

Definition 4 RS
H is the set of equivalent structured realizations. Realizations

from RS
H are structured according to S and have a transfer function H. Hence

RS
H , RH ∩S .

Definition 5 A parametrization of a realization R is the set of coefficients
of Z that are significant for the realization.

3.3 Examples

3.3.1 Classical state-space

The classical state-space realization can, of course, be expressed with the SIF.
The realization {

X(k + 1) = AqX(k) +BqU(k)
Y (k) = CqX(k) +DqU(k) (12)

correspond to the implicit form with l = 0, So

Z =

. . .
. Aq Bq
. Cq Dq

 (13)

1This is a useful French word that we have purloined. It is also used in the field of social
sciences. Here it means the set of structured realizations.

13

3.3.2 State-space with δ operator

The δ-state-space realization corresponds to{
δ[X(k)] = AδX(k) +BδU(k)
Y (k) = CδX(k) +DδU(k) (14)

with δ = q−1
∆ and ∆ > 0.

This is realized with In 0 0
−∆In In 0

0 0 Ip

T (k + 1)
X(k + 1)
Y (k)

 =

0 Aδ Bδ
0 In 0
0 Cδ Dδ

T (k)
X(k)
U(k)

 (15)

3.3.3 Cascade decomposition

Let’s consider two systems R1 and R2 with the following SIF expression: J1 0 0
−K1 I 0
−L1 0 I

T1(k + 1)
X1(k + 1)
Y1(k)

 =

0 M1 N1

0 P1 Q1

0 R1 S1

T1(k)
X1(k)
U1(k)

 (16)

 J2 0 0
−K2 I 0
−L2 0 I

T2(k + 1)
X2(k + 1)
Y2(k)

 =

0 M2 N2

0 P2 Q2

0 R2 S2

T2(k)
X2(k)
U2(k)

 (17)

The two systems are put on cascade.

Y (k)U(k)
R1 R2

R

Figure 1: Two systems cascaded

The intermediate variables receive the result of the first system, so the cascaded
system has the following SIF realization:0BBBBBBBB@

J1 0 0 0 0 0

−L1 I 0 0 0 0

0 −N2 J2 0 0 0

−K1 0 0 I 0 0

0 −Q2 −K2 0 I 0

0 −S2 −L2 0 0 I

1CCCCCCCCA

0BBBBB@
T1(k + 1)
T (k + 1)
T2(k + 1)
X1(k + 1)
X2(k + 1)
Y2(k)

1CCCCCA =

0BBBBBBBB@

0 0 0 M1 0 N1

0 0 0 R1 0 S1

0 0 0 0 M2 0

0 0 0 P1 0 Q1

0 0 0 0 P2 0

0 0 0 0 R2 0

1CCCCCCCCA

0BBBBB@
T1(k)
T (k)
T2(k)
X1(k)
X2(k)
U1(k)

1CCCCCA

14

So

Z =



−J1 0 0 M1 0 N1

L1 −I 0 R1 0 S1

0 N2 −J2 0 M2 0
K1 0 0 P1 0 Q1

0 Q2 K2 0 P2 0
0 S2 L2 0 R2 0

 (18)

3.3.4 Others forms

A lot of other possible structurations are considered. Here are some of them:

• Direct Form I with q-operator (DFIq2FWR)

• ρ Direct Form II transposed (rhoDFIIt2FWR), that encompasses the Direct
Form II with q and δ-operators

• cascade and parallel decomposition (plus, mtimes)

• classical state-space realizations (SS2FWR)

• δ-state-space realizations (SSdelta2FWR)

• Modal form with ρ-operator (Modalrho2FWR)

• ...

3.4 Equivalent classes

In order to exploit the potential offered by the specialized implicit form in im-
proving implementations, it is necessary to describe sets of equivalent system
realizations. However, non-minimal realizations may provide better implemen-
tations (the δ-form can be seen as a non-minimal realization when expressed
in the implicit state-space form with the shift operator. Hence the notion of
equivalence needs to be extended so that the system state dimension does not
need to be preserved. The Inclusion Principle, introduced by Šiljak and Ikeda
[24, 49] in the context of decentralized control, has been used to allows the for-
malization of the equivalence and inclusion relations between two realizations
R and R̃ (see [17]).

Although this extension of the Inclusion Principle gives the formal descrip-
tion of equivalent classes, it is of practical interest to consider realizations of the
same dimensions (l̃ = l and ñ = n) where transformations from one realization
to another is only a similarity transformation.

Proposition 1 Consider a realization R := (Z, l,m, n, p). All the realizations
R̃ := (Z̃, l,m, n, p) with

Z̃ =

Y U−1

Ip

Z

W U
Im

 (19)

15

and U , W, Y are non-singular matrices, are equivalent to R.
Eq. (19) defines a ”UYW-transformation.

It is also possible to just consider a subset of similarity transformations that
preserve a particular structure, say cascade or delta. These are always a partic-
ular case of proposition 1.
For example, if an initial δ-structured realization R := (Z0, n,m, n, p) is given,
the subset of equivalent δ-structured realization is defined by

RSδ

H =


R := (Z, n,m, n, p)\

Z =

U−1

U−1

Ip

Z0

U U
Im


∀U ∈ Rn×n non-singular

 (20)

In addition to a description of the various existing realizations with the exact
parametrization, this formalism gives an algebraic characterization of equivalent
classes. These classes can be used to search for an optimal structured realization
(see Section 3.5).

3.5 Finite Wordlength measures

3.5.1 Coefficient’s quantization

A coefficient’s quantization depends both on its value and its representation.
Firstly if the value of a coefficient is such that it will be quantized with-

out error, then that parameter makes no contribution to the overall coefficient
sensitivity. Hence we introduce weighting matrices WJ to WS (and also WZ)
respectively associated with matrices J to S of a realization, such that

(WX)i,j ,

{
0 if Xi,j is exactly implemented,
1 otherwise.

(21)

In the toolbox, the notation (β, γ) is used for the fixed-point representation
of a variable or coefficient (2’s complement scheme), according to figure 2: β is
the total wordlength in bits of the representation, whereas γ is the fractional
part wordlength (it gives the binary-point position of the representation). They
are fixed for each variable and coefficient, and implicit, unlike the floating-point
representation. β and γ will be suffixed by the variable/coefficient they refer
to. These parameters could be scalars, vectors or matrices, according to the
variables they refer to.

To represent a value x without overflow, a fixed-point representation (βx, γx)
may satisfy:

βx − γx − 1 >
⌊

log2 |x|
⌋

+ 1 (22)

where the bac operation rounds a to the nearest integer lower or equal to a (for
positive numbers bac is the integer part).

16

± 2
1

2
0

2
−1... ...

.2β−γ−2

β − γ − 1

β

γ

2−γ

integer part fractional part

s

Figure 2: Fixed-point representation

In order to simplify the expressions that manipulate wordlengths or binary
point positions, matrix extensions of log2, floor operator b.c and power of 2 are
used. For example, if M ∈ Rp×q, then log2(M) ∈ Rp×q such as (log2(M))i,j ,
log2(Mi,j).

3.5.2 Input-Output sensitivity

The open-loop transfer function sensitivity measure is defined by

MW
L2

=
∥∥∥∥δHδZ × rZ

∥∥∥∥2

F

. (23)

where δH
δZ ∈ Rl+n+p×l+n+q is the transfer function sensitivity matrix. It is the

matrix of the L2-norm of the sensitivity of the transfer function H with respect
to each coefficient Zi,j . It is defined by(

δH

δZ

)
i,j

,

∥∥∥∥ ∂H

∂Zi,j

∥∥∥∥
2

, (24)

In SISO case, the MW
L2

measure is equal to

MW
L2

=
∥∥∥∥∂H∂Z × rZ

∥∥∥∥2

2

. (25)

and is then an extension to the SIF of the classical state-space sensitivity mea-
sure

ML2 ,

∥∥∥∥∂H∂A
∥∥∥∥2

2

+
∥∥∥∥∂H∂B

∥∥∥∥2

2

+
∥∥∥∥∂H∂C

∥∥∥∥2

2

. (26)

This measure is implemented with the function MsensH.
See [13],[17] for more details.

3.5.3 Pole sensitivity

The pole sensitivity measure of R is defined by

Ψ =
n∑
k=1

∥∥∥∥∂ |λk|∂Z
× rZ

∥∥∥∥2

F

. (27)

17

(it is also possible to only consider the sensitivity of λk instead of the sensitivity
of |λk|.

A pole sensitivity matrix can also be constructed to evaluate the overall
impact of each coefficient. Let δ|λ|

δZ denote the pole sensitivity matrix defined
by (

δ |λ|
δZ

)
i,j

,

√√√√ n∑
k=1

(
∂ |λk|
∂Zi,j

)2

. (28)

Then, The pole sensitivity measure is then given by:

Ψ =
∥∥∥∥δ |λ|δZ

× rZ
∥∥∥∥2

F

. (29)

This measure is implemented with the function MsensPole.
See [14],[17] for more details.

3.5.4 Output roundoff noise

When implemented a realization R, the steps (i) to (iii) are modified by the add
of noises ξT (k), ξX(k) and ξY (k):

J.T (k + 1)←M.X(k) +N.U(k) + ξT (k)
X(k + 1)←K.T (k + 1) + P.X(k) +Q.U(k) + ξX(k)

Y (k)←L.T (k + 1) +R.X(k) + S.U(k) + ξY (k)
(30)

These noises added depend on:

• the way the computations are organized (the order of the sums) and done,

• the fixed-point representation of the inputs, the outputs,

• and the fixed-point representation chosen for the states, the intermediate
variables and the coefficients.

The add of these noises are equivalent to a noise ξ′(k) added on the output.
The Output Noise Power is defined as the power of ξ′(k):

P , Eξ′(k)ξ′(k)> (31)

where the E. is the mean operator.

The Roundoff Noise Gain is the output noise power computed in a spe-
cific computational scheme : the noises are supposed to appear only after each
multiplication and are modeled by centered white noise statistically indepen-
dent. Each noise is supposed to have the same power σ2

0 (determined by the
wordlength chosen for all the variables and coefficients).

The Roundoff Noise Gain is defined by

G ,
P

σ2
0

(32)

These measures are implemented with the function ONP and RNG. See [19]
and [20].

18

3.5.5 Closed-loop measures

These measures are also extended to the closed-loop context. They now concern
the closed-loop transfer function or the closed-loop poles.

Consider the plant P together with the controller C according to the standard
form shown in Figure 3, where W (k) ∈ Rp1 is the exogenous input, Y (k) ∈ Rp2
the control input, Z(k) ∈ Rm1 the controlled output and U(k) ∈ Rm2 the
measured output.

P

m1

m2

C

p1

p2

W (k) Z(k)

U(k)Y (k)

S̄

Figure 3: Closed-loop control system

The controller is defined as C := (Z, l,m2, n, p2) and the plant P as

P :=

 A B1 B2

C1 D11 D12

C2 D21 0

 (33)

where A ∈ RnP×nP , B1 ∈ RnP×p1 , B2 ∈ RnP×p2 , C1 ∈ Rm1×nP , C2 ∈ Rm2×nP ,
D11 ∈ Rm1×p1 , D12 ∈ Rm1×p2 , D21 ∈ Rm2×p1 and D22 ∈ Rm2×p2 is assumed to
be zero only to simplify the mathematical expressions.

The closed-loop system S̄ is then given by

S̄ = Fl(P, C) :=

(
Ā B̄

C̄ D̄

)
(34)

where Fl(·, ·) is the well-known lower linear fractional transform [56] and where
Ā ∈ RnP+n×nP+n, B̄ ∈ RnP+n×p1 , C̄ ∈ Rm1×nP+n and D̄ ∈ Rm1×p1 are such
that

Ā =
(
A+B2DZC2 B2CZ

BZC2 AZ

)
, B̄ =

(
B1 +B2DZD21

BZD21

)
, (35)

C̄ =
(
C1 +D12DZC2 D12CZ

)
, D̄ = D11 +D12DZD21. (36)

The closed-loop transfer function is

H̄ : z 7→ C̄
(
zI − Ā

)−1
B̄ + D̄. (37)

These notations will be used in the toolbox.
Then, the following measures are considered:

19

• the input-output sensitivity (MsensH cl)

M̄W
L2

=
∥∥∥∥∂H̄∂Z × rZ

∥∥∥∥2

2

. (38)

• the pole-sensitivity and related stability measure (MsensPole cl and Mstability)

Ψ̄ =
n∑
k=1

∥∥∥∥∥∂
∣∣λ̄k∣∣
∂Z

× rZ

∥∥∥∥∥
2

F

. (39)

• the roundoff noise gain (RNG cl)

See [18].

4 The optimal realization problem

The problem of determining the best realization can be posed as follows:

Problem 1 (Optimal realization problem) Consider a transfer function H
and a sensitivity measure J . The optimal design problem is to find the best
realization Ropt with transfer function H according to the criteria J , that is

Ropt = arg min
R∈RH

J (R). (40)

Due to the size of RH , this problem cannot be solved practically. Indeed,
a solution may even have infinite dimension. Hence the following problem is
introduced to restrict the search to a particular structuration.

Problem 2 (Optimal structured realization problem) The problem to find
the optimal structured realization RS

opt, that is

RS
opt = arg min

R∈RS
H

J (R). (41)

The Inclusion Principle (Proposition 1) provides the means to search over
the structured realizations set RS

H .
Since the measure J could be non-smooth and/or non-convex, the Adaptive
Simulated Annealing (ASA) [25] method could be used to solve Problem 2.
This method has worked well for other optimal realization problems [53].
The FWR Toolbox can also use simplex or Quasi-Newton algorithm to solve
problem 2.

20

5 Tutorial

5.1 First example

Let’s consider this discrete state-space system:

>> A = [1.4590 -0.91037 0.39565; 1 0 0; 0 0.5 0];
>> B = [0.5; 0; 0];
>> C = [0.28261 0.13244 0.15183];
>> D = 0.0031689;
>> Sys = ss(A,B,C,D, 1e-2);

Then, we can create a first Finite Wordlength Realization

R = SS2FWR(Sys);

First, let’s display this FWR object

>> R
R has 1 input, 1 output, 3 states, and 0 intermediate variable.
Z=

1.4590e+00 -9.1037e-01 3.9565e-01 5.0000e-01
1.0000e+00 0 0 0

0 5.0000e-01 0 0
2.8261e-01 1.3244e-01 1.5183e-01 3.1689e-03

It is also possible to display, for example, the associated matrices Wo (observ-
ability grammian), P and WZ :

>> R.Wo
ans =

1.0232e+00 -6.1354e-01 3.9081e-01
-6.1354e-01 5.5557e-01 -2.7112e-01
3.9081e-01 -2.7112e-01 1.8322e-01

>> R.P
ans =

1.4590e+00 -9.1037e-01 3.9565e-01
1.0000e+00 0 0

0 5.0000e-01 0

>> R.WZ
ans =

1 1 1 1
0 0 0 0
0 1 0 0
1 1 1 1

21

This last result shows that some coefficients will be considered as exactly im-
plemented (coefficients where (WZ)ij is null), whereas some will be modified
during the quantization.
It is possible to ask for the input-output sensitivity and the sensitivity matrix

>> [M MZ] = MsensH(R)
M =

1.4391e+01

MZ =
1.9730e+00 1.9730e+00 9.8651e-01 1.0115e+00

0 0 0 0
0 8.4062e-01 0 0

1.1358e+00 1.1358e+00 5.6788e-01 1.0000e+00

To have the sensitivity for all the coefficients, it is possible to set WZ to 1

>> R.WZ=ones(4);
>> [M MZ] = MsensH(R);
>> MZ
MZ =

1.9730e+00 1.9730e+00 9.8651e-01 1.0115e+00
1.3716e+00 1.3716e+00 6.8582e-01 7.4536e-01
8.4062e-01 8.4062e-01 4.2031e-01 4.2805e-01
1.1358e+00 1.1358e+00 5.6788e-01 1.0000e+00

Now, it could be interesting to find, among the equivalent state-space real-
izations, one that minimize this input-output sensitivity. For this purpose, we
need to create a Finite Wordlength Structuration:

>> S = SS2FWS(Sys)
has 1 input, 1 output, 3 states, and 0 intermediate variable.

Z=
1.4590e+00 -9.1037e-01 3.9565e-01 5.0000e-01
1.0000e+00 0 0 0

0 5.0000e-01 0 0
2.8261e-01 1.3244e-01 1.5183e-01 3.1689e-03

T=
1 0 0
0 1 0
0 0 1

In addition to a FWR object, a FWStructuration includes a parameter T, that
allows to get all the state-space equivalent realizations (T−1AT, T−1B,CT,D).
To consider a new realization, deduced from the original one with this transfor-
mation, we simply give a new value for T :

>> S.T=rand(3)

22

has 1 input, 1 output, 3 states, and 0 intermediate variable.
Z=

3.7455e-01 1.3029e+00 -4.6071e+00 -2.0013e+00
2.1170e-01 -9.4236e-01 5.5850e+00 5.0983e-01
-1.2475e-02 -4.9193e-01 2.0268e+00 1.8077e+00
3.2995e-01 1.8533e-01 3.9119e-01 3.1689e-03

T=
3.8156e-01 1.8687e-01 6.4631e-01
7.6552e-01 4.8976e-01 7.0936e-01
7.9520e-01 4.4559e-01 7.5469e-01

The original realization is stored in S.Rini, whereas the actual realization is
obtained with S.R.
It is important to remark that all the equivalent realizations deduced from the
original one have the same WZ matrix. So, in order to consider fully parame-
terized realizations, it is important to set WZ to a matrix with all coefficients
set to 1, with S.Rini.WZ=ones(size(S.Rini.WZ));.
It is possible to compare these two realizations and their I/O-sensitivity

>> MsensH(S.Rini)
ans =

1.4391e+01

>> MsensH(S.R)
ans =

5.8668e+02

Now, the most interesting thing is to search for the optimal realization.
First, we need to set the options for the search

>> options = {’method’,’simplex’,’Display’,’Iter’,’MaxFunEvals’,1e4};

Then, we can run the optimization:

>> S = optim(S, optins, @MsensH)

The options are cells of pairs. Some options concern the optim meth-
ods, while some are directly passed to the Matlab optimization algorithm used
(fminsearch, fminunc, ...). {’method’,’simplex’} allows to use the fminsearch
algorithm, whereas {’Display’,’Iter’} and {’MaxFunEvals’,1e4} allow to
display each iteration and set the maximum number of function evaluation to
104. See optimset for all the possible options and the method optim for all the
possible options.

S has now the optimal value for T .

6 The classes

The the FWR toolbox is based on two classes:

23

• the FWR class to describe the Finite Wordlength Realizations

• the FWS class for the Finite Wordlength Structurations

6.1 The FWR class

The FWR class describes a realization expressed with the SIF (see def. 1). It
contains the following fields:

• l, m, n and p : dimensions of the realization (l intermediate variables, m
inputs, n states and p outputs)

• J, K, L, M, N, P, Q, R and S : correspond to matrices J to S

• Z : the Z matrix defined in (11) from J to S

• WJ, WK, WL, WM, WN, WP, WQ, WR and WS : the weighting matrices WJ to WS

(they imply which parameter is exactly implemented (0, ±1, a power of
two or any number that will not be changed during the quantization), see
(21))

• WZ : the WZ matrix

• AZ, BZ, CZ and AZ : matrices AZ , BZ , CZ and DZ (see equations (7) and
(8))

• Wc, Wo : commandability and observability gramians Wc and Wo

• FPIS : a Fixed-Point Implementation Scheme (see section 6.1.1)

• fp, block, rZ : these fields are related to the coefficient representation

– fp : sets if the implementation uses the fixed-point or the floating-
point representation. fp can take the values ’fixed’ (1=default) or
’floating’ (2).

– block : sets the coefficient’s block. Coefficients in the same block
share the same representation (binary-point position). block can
take the values ’full’ (1), ’natural’ (2=default), or ’none’ (3).

– rZ : gives how much Z is changed during the quantization process :
Z is perturbed to Z + rZ ×∆ where

rZ ,

{
WZ for fixed-point representation,
2ηZ ×WZ for floating-point representation,

(42)

and ηZ is such that

(ηZ)i,j ,

{
the largest absolute value of
the block in which Zi,j resides. (43)

24

These fields are only used for the sensitivities measure (MsensH, MsensPole,
...), and are independent from the FPIS. These fields will probably disa-
pear.
See [17] for block-fixed-point and block-floating-point representation.

When a FWR object is created, it is not possible to change its dimensions
(fields l, m, n and p or the size of the matrices) or the fields AZ, BZ, CZ, AZ, Wc
and Wo.
Fields Z and WZ are redundant with fields J to S and WJ to WS, but they can both
be usefull. Changing Z automatically changes fields J to S and reciprocally (the
same with WZ). Fields AZ, BZ, CZ, AZ, Wc and Wo are deduced accordingly.

6.1.1 Fixed-Point Implementation Scheme

The FPIS is a structure to set the Fixed-Point Implementation Scheme. It is
composed by:

• the fixed-point format of the input (βU , γU) and its maximum magnitude

value
max

U

• the fixed-point format of the intermediate variables (βT , γT)

• the fixed-point format of the states (βX , γX)

• the fixed-point format of the output (βY , γY)

• the fixed-point format of the coefficients (βZ , γZ)

• the fixed-point format of the accumulator (βADD + βG, γADD) (βG guard
bits)

• the right-shift bits after each scalar product dADD (shiftADD)

• the right-shift bits after each multiplication by a coefficient dZ (shiftZ)

• the computational scheme : Roundoff After Multiplication (RAM) or
Roundoff Before Multiplication (RBM)

The algorithm

[i] JT (k + 1)←MX(k) +NU(k)
[ii] X(k + 1)← KT (k + 1) + PX(k) +QU(k)
[iii] Y (k)← LT (k + 1) +RX(k) + SU(k)

requires to implement l + n+ p scalar products.
Each scalar product

S =
n∑
i=1

PiEi (44)

25

where (Pi)16i6n are given coefficients and (Ei)16i6n some bounded variables,
can be implemented according to the following algorithms 1 and 2, and where
P ′i , E

′
i and S′i are the integer representations (according to their fixed-point

format) to Pi,Ei and Si.

Add← 0
for i from 0 to n do

Add← (P ′i ∗ E′i) >> di
end
S′i ← Add >> d′i

Algorithm 1: Roundoff After Mul-
tiplication (RAM)

Add← 0
for i from 0 to n do

Add← (P ′i >> di) ∗ E′i
end
S′i ← Add >> d′i

Algorithm 2: Roundoff Before Mul-
tiplication (RBM)

Of course, di represents the right-shift after each multiplication and d′i rep-
resents the final shift. They respectively correspond to the dZ and dADD shift
in the SIF algorithm.

The user may specify all the wordlengths (βU , βT , βX , βY , βADD, βg and

βZ) and
max

U .
See [20] and the function setFPIS for more details.

6.1.2 Methods

The FWR’s methods are :

algorithmCfloat Return the algorithm associated to this realization.
algorithmLaTeX Return the pseudocode algorithm described in LATEX
computationalCost Give the number of additions and multiplications im-

plied in the realization
computeW Compute (or update) the weighting matrices (WJ to

WS , and WZ) of a FWR object
display Display the realization (dimensions and Z)
double Convert FWR object to double (return Z matrix)
FWR FWR class’ constructor
FWRmat2LaTeX Display a matrix (Z or a sensitivity matrix) in

LATEX(with pmat
get Get some properties of a FWR object
implementLaTeX Return the associated fixed-point algorithm described

in LATEX
implementMATLAB Create the associated fixed-point algorithm in Matlab

language
implementVHDL Create the associated fixed-point algorithm in VHDL
l2scaling Perform a L2-scaling on the FWR

26

MsensH Compute the open-loop transfer function sensitivity
measure (and the

MsensH cl Compute the closed-loop transfer function sensitivity
measure (and the

MsensPole Compute the open-loop pole sensitivity measure
MsensPole cl Compute the closed-loop pole sensitivity measure
Mstability Compute the closed-loop pole sensitivity stability re-

lated measure
mtimes Multiply two FWR (put them in cascade)
ONP Compute the Output Noise Power for a FWR object

with Roundoff Before
plus add two FWR object (put them in parallel)
quantized Return the quantized realization, according to a fixed-

point implementation scheme
realize Numerically computes the outputs, states and interme-

diate variables with a given input U.
relaxedl2scaling Perform a relaxed-L2-scaling on the FWR
RNG Compute the open-loop Roundoff Noise Gain
RNG cl Compute the closed-loop Roundoff Noise Gain
set Set some properties of a FWR object
setFPIS Set the Fixed-Point Implementation Scheme (FPIS) of

an FWR object
simplify Simplify (if possible) a FWR, by removing the non-

necessary intermediate variables and states
size Return the size of the FW Realization
ss Convert a FWR object into a ss (state-space) object

(equivalent state-space)
subsasgn Subscripted assign for FWR object
subsref Subscripted reference for FWR object
tf Convert a FWR object into a tf object (transfer func-

tion)
TradeOffMeasure cl Compute a (pseudo) tradeoff closed-loop measure
transform Perform a UYW-transformation (similarity on Z)

6.2 The FWS class

The FWS class describes a structuration and the way to search over the set
of equivalent realizations of this structuration. This is done by defining the
parameters used to search over the equivalent set and how theses parameters
give new realizations (via the UYW-transformation, eq. (19), or directly).

It contains the following fields :

• Rini : the initial realization of this structuration (all the other equivalent
structured realizations are computed from this realization),

27

• R : the actual considered realization,

• paramsName : name of the parameters used to search over the equivalent
set,

• paramsValue : value of this parameters (they define the actual considered
realization R),

• paramsSize : size of these parameters,

• indices : vector of indices. To do the optimization, the values of the
parameters are put together in a row vector, and indices stores these
indices, in that row, of each parameters (it is used when some parameters
are fixed during the optimization). This is also internally used when some
parameters are fixed,

• UYWfun : handle to a function that gives the transformation matrices U ,
Y and W from the parameters,

• Rfun : handle to a function that gives the realization from the parameters
(when the UYWfun cannot be defined),

• dataMeasure : cell of extra data used for the FWL measures (to store
values that do not change from one realization to another equivalent) :
every FWL measure can add what it needs inside,

• dataFWS : cell of extra data used to store internal values (can be used
when defining a structuration).

The parameters (their names, values and sizes are stored in paramsName,
paramsValue and paramsSize) can be used directly by their names, like any
other fields : if S is a structuration, with parameters named ’T1’ and ’T2’,
expressions S.T1 and S.T2 allow to access the corresponding values.
All the fields of the FWS class are accessible with the .fieldname method (get),
but it is only possible to change Rini and the parameters (it is not possible to
change their sizes). And changing one parameter will automatically change R.

When a structuration S is defined, it is then possible to search over all
the equivalent realizations with the same structuration by changing the values
of the associated parameters (those where the names are in paramsName). S.R
gives the new realization (automatically update when paramsValue change, with
S.paramName =...). This can be done with the optim method, that uses quasi-
Newton, simplex or ASA algorithm.

There is two ways to define how the parameters give a new realization. Only
one of the two fields UYWfun and Rfun must be filled. The function UYWfun must
be preferred, because it allows to compute more quickly the FWL measures
whose comportment with the UYW-transformation is defined.

28

6.2.1 UYWfun function

Purpose :
The UYWfun is a function that defines how to search over all the equivalent re-
alizations. It transforms the parameters of the structuration (given by args) in
transformation matrices U , Y and W. The cost flag indicates if the transfor-
mation is valid.

Syntax :
function [U,Y,W,cost flag] = my UYW fun (Rini, paramsValue, dataFWS)

Arguments :
U,Y,W : matrices U , Y and W
cost flag : boolean that indicates if the parameters forms a valid transformation
Rini : initial FW Realization
paramsValue : cells of parameters values
dataFWS : cell of extra data (that can be used to store internal values)

The parameters’ values are accessible with paramsValue : the ith parameter
(in the order it is built) is given by paramsValue{i}. Most of the time, Rini
and dataFWS are not useful (U, Y and W often directly depend on paramsValue).

6.2.2 Rfun function

Purpose :
The Rfun is a function that directly creates a new realization from the param-
eters’ values, without returning U , Y and W matrices.

Syntax :
function [R,cost flag] = my R fun (Rini, paramsValue, dataFWS)

Arguments :
R : new realization
cost flag : boolean that indicates if the parameters forms a valid transformation
Rini : initial FW Realization
paramsValue : cells of parameters’ values
dataFWS : cell of extra data (that can be used to store internal values)

Everyone who creates a FWS should follow theses definitions.

6.2.3 Methods

The FWS’s methods are :

display Display the realization (dimensions, Z and the param-
eters)

29

FWS Constructor of the FWS class.
genCostFunction G eneric cost function for optimization of a FWS
get Get some properties of a FWS object (or list the prop-

erties if propName is ignored)
getValues Return the parameters’ value (cells of values)
MsensPole Compute the open-loop pole sensitivity measure for a

FWS object.
MsensPole cl Compute the closed-loop pole sensitivity measure for a

FWS object.
Mstability Compute the closed-loop pole sensitivity stability re-

lated measure for a FWS object.
optim Find the optimal realization, according to the

measureFun measure, in the set of structured equiv-
alent realizations

RNG Compute the open-loop Roundoff Noise Gain for a
FWS.

RNG cl Compute the closed-loop Roundoff Noise Gain for a
FWS.

set Set some properties of a FWS object
setFPIS Set the Fixed-Point Implementation Scheme (FPIS) of

an FWS object
ss Convert a FWS object into a ss (state-space) object

(equivalent state-space)
subsasgn Subscripted assign for FWS object.
subsref Subscripted reference for FWS object.
tf Convert a FWS object into a tf object (transfer func-

tion)

30

7 FWR Toolbox reference

7.1 create realizations and structurations

In additions to the FWR/FWS’s methods, the following functions can be used
to create classical realizations and structurations :

DFIq2FWR Transform a transfer function (tf object) into a FWR
object with the Direct Form I scheme

FFT2FWR Build Fast Fourier Transform (size n) with a FWR ob-
ject

implicitSS2FWS Transform an implicit State-space system into a FWS
object

Modaldelta2FWR Transform a δ-based modal realization into a FWR ob-
ject

Modalrho2FWR Transform a ρ-modal realization into a FWR object,
where the parameter ∆ is reserved for relaxed L2-
scaling

Modalrho2FWS Transform a ρ-modal realization into a FWS object,
where the parameter ∆ is reserved for relaxed L2-
scaling

Observer2FWR Transform an Observer-State-Feedback form in FWR
object

OpModalrho2FWR Optimal ρ-based modal realization under FWR struc-
ture

rhoDFIIt2FWR Build a ρ-DFIIt realization
rhoDFIIt2FWS Build a ρ-DFIIt structuration
SS2FWR Transform a classical state-space system (ss object)

into a FWR object
SS2FWS Transform a classical state-space system (ss object)

into a FWS object
SSdelta2FWR Transform a δ-state-space realization into a FWR ob-

ject
SSdelta2FWS Transform a δ-state-space realization into a FWS object
SSrho2FWR Transform a ρ-based state-space realization into a FWR

object
SSrho2FWS Transform a ρ-state-space realization into a FWS object

Here is the detailed list:

7.1.1 DFIq2FWR

Purpose :
Transform a transfer function (tf object) into a FWR object with the Direct
Form I scheme

31

Syntax :
R = DFIq2FWR(H)

Parameters :
R : FWR object
H : tf object

Description :
The system considered is described by the transfer function

H(z) =

n∑
i=0

biz
−i

n∑
i=0

aiz−i
(45)

and implemented with the recurrent equation

Y (k) =
1
a0

(
n∑
i=0

biU(k − i)−
n∑
i=1

aiY (k − i)

)
∀k > n (46)

This could be described by the figure 4.
The (finite precision) equivalent system, in the implicit state-space formalism,

q
−1

q
−1

q
−1

q
−1

q
−1

q
−1

q
−1

q
−1

+

b0 b1 b2 bi bn

1

a0

−a1−a2−ai−an

U(k) U(k − 1) U(k − n)

Y (k)

Y (k − 1)Y (k − n)

Figure 4: Direct Form I with q-operator

is given by a0 0 0
−Γ4 In 0
−1 0 1

T (k + 1)
X(k + 1)
Y (k)

 =

0 Γ1 b0
0 Γ2 Γ3

0 0 0

T (k)
X(k)
U(k)

 (47)

32

where

Γ1 =
(
b1 · · · · · · bn −a1 · · · · · · −an

)
(48)

Γ2 =



0

1
. . .
.

1 0
0

1
. . .
.

1 0


(49)

Γ3 =
(

1 0 . . . 0 0 0
)> (50)

Γ4 =
(

0 0 1 0 . . . 0
)> (51)

7.1.2 FFT2FWR

Purpose :
Build Fast Fourier Transform (size n) with a FWR object

Syntax :
R = FFT2FWR(n)
R = FFT2FWR(n, toSimplify)

Parameters :
R : FWR object to represent the algorithm
n : size of the FFT
toSimplify : 1 (default) to make the simplification (level=1)

: 0 to avoid simplifications

Description :
The general factorization of DFT matrices are given by the Cooley-Tukey algo-
rithm [6, 7], also known as Fast Fourier Transform (FFT):

DFTn = (DFTr ⊗ Is) T n
s (Ir ⊗DFTs) L n

r (52)

where

• n is factorized in n = rs,

• ⊗ denotes the Kronecker product of matrices defined by A⊗B , (Ak,lB),

33

• T n
s is the twiddle matrix with

T rs
s ,

r−1⊕
j=0

diag
(
ω0
n, . . . , ω

s−1
n

)−j
(53)

• A⊕B is the direct sum of A and B:

A⊕B ,

(
A

B

)
(54)

• and L n
r is the stride permutation matrix that maps the vector elements

indices j as:

L rs
r : j 7→

{
jr mod rs− 1 for 0 6 j 6 rs− 2
rs− 1 for j = rs− 1

(55)

Equation (52) depends on the factorization n = rs, and should be applied
recursively until n is a prime number. Since DFT is a linear transform, it
is possible to express it with the SIF. Let us find the SIF realization R :=
(J,K,L,M,N, P,Q,R, S) that realizes

Y (k) = DFTnU(k) (56)

with U(k) ∈ Rn×1 and Y (k) ∈ Cn×1.
The following proposition allows to express such a realization by applying Cooley-
Tukey factorization.

Proposition 2 Let suppose that R1 := (J1, ., L1, ., N1, ., ., ., S1) and R2 :=
(J2, ., L2, ., N2, ., ., ., S2) respectively realize DFTr and DFTs, i.e.:

DFTr :
{

J1T1 = N1U1(k)
Y1(k) = L1T1 + S1U1(k) (57)

DFTs :
{

J2T2 = N2U2(k)
Y2(k) = L2T2 + S2U2(k) (58)

Remark that no states are needed and that S1 (and S2) are only required if r = 2
(s = 2). R is given by R := (J, , L, ,N, , , ,) with

J =


(Ir ⊗ J2) 0 0 0
− (Ir ⊗ L2) In 0 0

0 −T n
s In 0

0 0 − (N1 ⊗ Is) (J1 ⊗ Is)

 (59)

L =
(
0 0 − (S1 ⊗ Is) − (L1 ⊗ Is)

)
(60)

N =


(Ir ⊗N2) L n

r

(Ir ⊗ S2) L n
r

0
0

 (61)

34

This proposition is realized with complexFFT, that returns a FFT realization
with complex coefficients. Considering that DFT2 can be realized with R :=

(, , , , , , , ,
(

1 1
1 −1

)
), the proposition 2 can be recursively applied to obtain the

SIF of DFT2l (for example, with r = s = 2
l
2 if l is even and with r = 2

l−1
2 and

s = 2 to obtain DFT
2
l+1
2

and with r = 2
l−1
2 and s = 2

l=11
2 is l is odd). Since

the proposition 2 provides rules for DFTn realization with complex coefficients,
a transformation is then required in order to obtain the DFT algorithm with
real coefficients. The output will now represent the real and imaginary parts of
the complex DFT outputs.

Proposition 3 Let suppose realization R′ := (J ′, , L′, , N ′, , , , S′) realizes DFTn
with complex coefficients (J ′ ∈ Cl×l, L′ ∈ Cn×l, N ∈ Cl×n and S ∈ Cn×n) and
real inputs. Then the realization R := (J, , L, ,N, , , , S) with

J = L 2l
l

(
<J ′ −=J ′
=J ′ <J ′

)(
L 2l
l

)>
(62)

L = L 2n
n

(
<L′ −=L′
=L′ <L′

)(
L 2l
l

)>
(63)

N = L 2l
l

(
<N ′ =N ′

)
(64)

S = L 2n
n

(
<S′ =S′

)
(65)

realize the DFTn with real coefficients and real outputs (the 2n outputs alternate
real and imaginary parts of the n complex outputs of R′).
<. and =. denote respectively the real and imaginary parts.

Example :
The FFT4 is given by the following realization (after simplification):

Z =



−1 0 0 0 1 0 1 0
0 −1 0 0 1 0 −1 0
0 0 −1 0 0 1 0 1
0 0 0 −1 0 1 0 −1
1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0


See also :
simplify, complexFFT, strideM, twiddleM

35

7.1.3 implicitSS2FWS

Purpose :
Transform an implicit State-space system into a FWS object

Syntax :
S = implicitSS2FWS(Aq,Bq,Cq,Dq,Eq)
S = implicitSS2FWS(Sys, Eq)

Parameters :
S : FWR object
Aq,Bq,Cq,Dq : State-space (q-operator) matrices
Eq : lower triangular matrix (default = identity)
Sys : state-space system (ss object)

Description :
The system considered is described by the equations:{

EX(k + 1) = AqX(k) +BqU(k)
Y (k) = CqX(k) +DqU(k) (66)

where E is a lower triangular matrix, with 1 on the diagonal (like the J matrix).
The (finite precision) equivalent system, in the implicit state-space formalism,
is given by

Z0 =

−E A B
In 0 0
0 C D

 (67)

and equivalent realizations can be searched with the similarity

Z =

Y−1

U−1

Ip

Z0

 U U
Ip

 (68)

where U is a non-singular matrix and Y is chosen so that YEU is still lower
triangular (in practice, the coefficients of the new matrix E are chosen by the
optimization algorithm, and Y is then deduced).

See also :
SS2FWS

References :
[17] : T. Hilaire, P. Chevrel, and J. Whidborne. A unifying framework for finite
wordlength realizations. IEEE Trans. on Circuits and Systems, 8(54), August
2007.

36

7.1.4 Modaldelta2FWR

Purpose :
Transform a δ-based modal realization into a FWR object , and this realization
can be relaxed L2-scaled or not.

Syntax :
R = Modaldelta2FWR(SYS, Delta, isDeltaExact)
R = Modaldelta2FWR(Aq, Bq, Cq, Dq, Delta, isDeltaExact)

Parameters :
R : FWR object
SYS : ss object
Aq,Bq,Cq,Dq : State-space (q-operator) matrices
Delta : Vector of ∆i. If they are not given, a relaxed L2-scaling is

performed (∆k then are induced)
isDeltaExact : 1 (default value) if the vector of ∆i is exactly implemented

: 0 else

Description :
Let consider the following transfer function given and its related modal realiza-
tion (Λ, B,C,D):

H(z) = D + C(zI − Λ)−1B

= D +
n∑
i=1

cibi

1− λiz−1

(69)

with λi 6= λj for all i 6= j so that Λ may be chosen as a diagonal matrix.
The modal representation is not unique since B and C may be scaled and the
diagonal elements of Λ may be permuted in different ways so as to to produce
the same transfer function. One invariant however is that is decouples the
dynamic modes λi and is closely related to partial-fraction expansion of H(z).
Rather to diagonalize the A-matrix, it is preferred in the sequel to combine the
complex-conjugate pole-pairs to form a real “block-diagonal” section in which
Λ has two-by-two real matrices along its diagonal as follows:

Λ =



α1 β1

β2 α2

α3 β3

β4 α4

. . .
αn−1 βn−1

βn αn


(70)

where αi and βi are linked to the real part and the imaginary part of the ith

pole, respectively. If the ith pole is real, then βi = 0; if the ith and (i + 1)th

37

poles are complex-conjugate, then αi = αi+1 and βi = −βi+1 = Im(λi).
The system considered is described by the equations{

δ[X(k)] = AδX(k) +BδU(k)
Y (k) = CδX(k) +DδU(k) (71)

where the δ-operator is defined by

δi ,
q − 1
∆i

(72)

and ∆i is a strictly positive constant.
The (finite precision) equivalent system, in the implicit state-space formalism,
is given by In 0 0

−∆ In 0
0 0 Ip

T (k + 1)
X(k + 1)
Y (k)

 =

0 Aδ Bδ
0 In 0
0 Cδ Dδ

T (k)
X(k)
U(k)

 (73)

where
∆ = diag(∆1 · · · ∆n)

If the system is given in classical state-space (ss object), the equivalent δ-
realization is obtained with :

Aδ = ∆−1(Λ− In), Bδ = ∆−1B, Cδ = C, Dδ = D (74)

The isDeltaExact parameter determines WK .

See also :
Modalrho2FWR

References :
[40] R. Middleton and G. Goodwin, Digital Control and Estimation, a unified
approach, Prentice-Hall International Editions, 1990.
[8] Y. Feng, P. Chevrel, and T. Hilaire. A practival strategy of an efficient and
sparse fwl implementation of lti filters. In submitted to ECC’09, 2009.

7.1.5 Modalrho2FWR

Purpose :
Transform a ρ-modal realization into a FWR object, where the parameter ∆ is
reserved for relaxed L2-scaling

Syntax :
R = Modalrho2FWR(SYS, Gamma, Gamma, isGammaExact)
R = Modalrho2FWR(Aq, Bq, Cq, Dq, Gamma, isGammaExact)

38

Parameters :
R : FWR object
SYS : Initial classical q-state-space system to be converted
Aq,Bq,Cq,Dq : State-space (q-operator) matrices
Gamma : Vector of gammai parameters
isGammaExact : 1 (default value) if we consider that the vector of γi is ex-

actly implemented
: 0 else

Description :
The modal representation applied here is the same as that used in Modaldelta2FWR
(see the details therein), while ∆ is reserved for relaxed L2-scaling. Define the
following series of 1st polynomial operators, named ρ-operators:

ρi =
q − γi

∆i
, ∀i = 1, 2, · · · , n (75)

with αi and ∆i > 0 are two sets of constants to determine. The particular
choice αi = 0 and ∆i = 1 (resp. αi = 1) leads to the shift operator (resp.
the δ-operator). The specialized implicit form related to the ρ-operator has the
particular structure: I 0 0

−∆ I 0
0 0 I

Tk+1

Xk+1

Yk

 =

0 Aρ Bρ
0 γ 0
0 Cρ Dρ

TkXk

Uk

 (76)

The condition of keeping equivalece is given as below:

Aρ = ∆−1(Λ− 1), Bρ = ∆−1B,Cρ = C and Dρ = D (77)
∆ = diag(∆1 · · · ∆n), γ = diag(γ1 · · · γn) (78)

The isGammaExact parameters determines WP .

See also :
Modalrho2FWS, SSrho2FWR

7.1.6 Modalrho2FWS

Purpose :
Transform a ρ-modal realization into a FWS object, where the parameter ∆ is
reserved for relaxed L2-scaling

Syntax :
S = Modalrho2FWS(SYS, Gamma, Gamma, isGammaExact)
S = Modalrho2FWS(Aq, Bq, Cq, Dq, Gamma, isGammaExact)

39

Parameters :
S : FWS object
SYS : Initial classical q-state-space system to be converted
Aq,Bq,Cq,Dq : State-space (q-operator) matrices
Gamma : Vector of gammai parameters
isGammaExact : 1 (default value) if we consider that the vector of γi is ex-

actly implemented
: 0 else

Description :
Modaldelta2FWR (see the details therein), while ∆ is reserved for relaxed L2-
scaling. Define the following series of 1st polynomial operators, named ρ-
operators:

ρi =
q − γi

∆i
, ∀i = 1, 2, · · · , n (79)

with αi and ∆i > 0 are two sets of constants to determine. The particular
choice αi = 0 and ∆i = 1 (resp. αi = 1) leads to the shift operator (resp.
the δ-operator). The specialized implicit form related to the ρ-operator has the
particular structure: I 0 0

−∆ I 0
0 0 I

Tk+1

Xk+1

Yk

 =

0 Aρ Bρ
0 γ 0
0 Cρ Dρ

TkXk

Uk

 (80)

The condition of keeping equivalece is given as below:

Aρ = ∆−1(Λ− 1), Bρ = ∆−1B,Cρ = C and Dρ = D (81)
∆ = diag(∆1 · · · ∆n), γ = diag(γ1 · · · γn) (82)

The isGammaExact parameters determines WP . All equivalent δ-state-space re-
alizations (with same size) can be obtained by modification of operator which
is achieved by choosing different γi. So there are only one parameter in the
structuration’s definition, namely γ.

See also :
Modalrho2FWR

References :
[8] Y. Feng, P. Chevrel, and T. Hilaire. A practival strategy of an efficient and
sparse FWL implementation of LTI filters. Submitted to ECC’09, 2009.

7.1.7 Observer2FWR

Purpose :
Transform an Observer-State-Feedback form in FWR object

40

Syntax :
R = Observer2FWR(Sysp, Kc, Kf, Q)

Parameters :
R : FWR object
Sysp : plant to be controlled (ss object)
Kf, Kc, Q : observer-state-feedback parameters

Description :
The system considered is described by the equations:{

X(k + 1) = ApX(k) +BpU(k) +Kf (Y (k)− CpX(k))
U(k) = −KcX(k) +Q(Y (k)− CpX(k)) (83)

where Ap, Bp and Cp are the state-space matrices of the plant, U(k) the p input
of the plant and Y (k) its m outputs.
Kf , Kc and Q are the parameters of the controller (see [2] for more details).
The (finite precision) equivalent system, in the implicit state-space formalism,
is given by

Z0 =


Ip 0 −Cp Ip

−Q Im −Kc 0
Kf Bp Ap 0
0 Im 0 0

 (84)

References :
[15] T. Hilaire, P. Chevrel, and Y. Trinquet. Implicit state-space representation
: a unifying framework for FWL implementation of LTI systems. Proc. of the
16th IFAC World Congress. Elsevier, July 2005.
[2] D. Alazard, C. Curres, P. Apkarian, M. Gauvrit, and G. Ferreses. Robustesse
et Commande Optimale. Cepadues Edition, 1999.

7.1.8 OpModalrho2FWR

Purpose :
Optimal ρ-based modal realization under FWR structure , in which the param-
eter ∆ is reserved for relaxed L2-scaling and implemented exactly, while the
Parameter γ is optimized analytically and is supposed to be coded exactly

Syntax :
R = OpModalrho2FWR(SYS)
R = OpModalrho2FWR(Aq, Bq, Cq, Dq)

Parameters :
R : FWR object
SYS : State-space object
Aq,Bq,Cq,Dq : State-space (q-operator) matrices

41

Description :
The realization’s structure applied here is the same as what is used for Modaldelta2FWR.
∆ is reserved for relaxed L2-scaling, and the choice of γ is given:

γi =


αi +

βi

(
WcX

)
i+1,i(

WcX

)
i,i

, i is odd;

αi +
βi

(
WcX

)
i,i−1(

WcX

)
i,i

, i is even.
(85)

where WcX is the controllability gramian associated with the state such as:

WcX = AZWcXA
T
Z+BZBTZ (86)

See also :
Modalrho2FWR

References :
[8] Y. Feng, P. Chevrel, and T. Hilaire. A practival strategy of an efficient and
sparse FWL implementation of LTI filters. In submitted to ECC’09, 2009.

7.1.9 rhoDFIIt2FWR

Purpose :
Build a ρ-DFIIt realization (ρ Direct Form II transposed, according to Li and
Zhao’s work). This realization can be L2-scaled or not

Syntax :
[R1, R2] = rhoDFIIt2FWR(H, gamma, isGammaExact, delta, isDeltaExact)

Parameters :
R1 : ρDFIIt realization (FWR object)
R2 : equivalent q-state-space (sparse realization) FWR object
H : tf object
gamma : vector of parameters γk
isGammaExact : (default: true) boolean to express if γ are exactly repre-

sented or not
delta : vector or parameters ∆k

: if they are not given, a L2-scaling is performed (∆k then
are induced)

isDeltaExact : (default: false) boolean to express if ∆k are exactly repre-
sented or not

42

Description :
The considered system H is re-parameterized as follows:

H(z) =
β0 + β1%

−1
1 + . . .+ βn−1%

−1
n−1 + βn%

−1
n

1 + α1%
−1
1 + . . .+ αn−1%

−n+1
−1 + αn%

−1
n

(87)

where

%i(z) ,
i∏

j=1

ρj(z) 1 6 i 6 n (88)

ρi(z) ,
z − γi

∆i
1 6 i 6 n (89)

and (γi)16i6n and (∆i > 0)16i6n are two sets of constants. Equation (87) can
be, for example, implemented with a transposed direct form II with operators(
ρ−1
i

)
16i6n

, see figures 5 and 6.
Clearly, when γi = 0,∆i = 1 (1 6 i 6 n), fig 5 is the conventional transposed

++ ++ +

U(k)

Y (k)

βn βiβn−1 β1 β0

ρ
−1

n
ρ
−1
i+1 ρ

−1

i
ρ
−1

1

αn
αn−1 αi α1

Figure 5: Generalized ρ Direct Form II

direct form II, and, with γi = 1,∆i = ∆ (1 6 i 6 n), one gets the δ transposed
direct form II.

See also :
rhoDFIIt2FWS

43

+ ∆iz
−1

γi
ρ
−1

i

Figure 6: realization of operator ρ−1
i

References :
[34] G. Li and Z. Zhao. On the generalized DFIIt structure and its state-
space realization in digital filter implementation. IEEE Trans. on Circuits and
Systems, 51(4):769–778, April 2004

7.1.10 rhoDFIIt2FWS

Purpose :
Build a ρ-DFIIt structuration (ρ Direct Form II transposed, according to Li and
Zhao’s work) this realization can be L2-scaled or not

Syntax :
[S1, S2] = rhoDFIIt2FWS(H, gamma, isGammaExact, delta, isDeltaExact)

Parameters :
R1 : ρDFIIt structuration (FWS object)
R2 : equivalent q-state-space (sparse realization) FWS object
H : tf object
gamma : vector of parameters γk
isGammaExact : (default: true) boolean to express if γ are exactly repre-

sented or not
delta : vector or parameters ∆k

: if they are not given, a L2-scaling is performed (∆k then
are induced)

isDeltaExact : (default: false) boolean to express if ∆k are exactly repre-
sented or not

See also :
rhoDFIIt2FWR

References :
[34] G. Li and Z. Zhao. On the generalized DFIIt structure and its state-
space realization in digital filter implementation. IEEE Trans. on Circuits and
Systems, 51(4):769–778, April 2004

44

7.1.11 SS2FWR

Purpose :
Transform a classical state-space system (ss object) into a FWR object

Syntax :
R = SS2FWR(Aq,Bq,Cq,Dq)
R = SS2FWR(Sys)

Parameters :
R : realization (FWR object)
Aq,Bq,Cq,Dq : (classical) state-space matrices
Sys : state-space system (ss object)

Description :
The system considered is described by the equations{

X(k + 1) = AqX(k) +BqU(k)
Y (k) = CqX(k) +DqU(k) (90)

The (finite precision) equivalent system, in the implicit state-space formalism,
is given by . . .

. In 0

. 0 Im

T (k + 1)
X(k + 1)
Y (k)

 =

. . .
. Aq Bq
. Cq Dq

T (k)
X(k)
U(k)

 (91)

or

Z =

. . .
. Aq Bq
. Cq Dq

 (92)

This is a particular case without any intermediate variables (l = 0).

See also :
SS2FWS

7.1.12 SS2FWS

Purpose :
Transform a classical state-space system (ss object) into a FWS object

Syntax :
S = SS2FWS(Aq,Bq,Cq,Dq)
S = SS2FWS(Sys)

45

Parameters :
S : structuration (FWS object)
Aq,Bq,Cq,Dq : (classical) state-space matrices
Sys : state-space system (ss object)

Description :
The system considered is described by the equations{

X(k + 1) = AqX(k) +BqU(k)
Y (k) = CqX(k) +DqU(k) (93)

The (finite precision) equivalent system, in the implicit state-space formalism,
is given by . . .

. In 0

. 0 Im

T (k + 1)
X(k + 1)
Y (k)

 =

. . .
. Aq Bq
. Cq Dq

T (k)
X(k)
U(k)

 (94)

or

Z =

. . .
. Aq Bq
. Cq Dq

 (95)

This is a particular case without any intermediate variables (l = 0).
All the state-space equivalent realizations (with same size) are given by the state-
space systems (T−1AqT, T

−1Bq, CqT,Dq), where T is a nonsingular matrix. So
there is one parameter in the structuration’s definition, named T. The equivalent
realizations are obtained with U = T , Y =W = Il. If Z0 is the initial realization,
the other realizations are obtained with

Z =

Il T−1

Ip

Z0

Il T
Im

 (96)

See also :
SS2FWR

7.1.13 SSdelta2FWR

Purpose :
Transform a δ-state-space realization into a FWR object

Syntax :
R = SSdelta2FWR(Ad,Bd,Cd,Dd, Delta, isDeltaExact)
R = SSdeltas2FWR(Sysq, Delta, isDeltaExact)

46

Parameters :
R : FWR object
Ad,Bd,Cd,Dd : State-space (delta-operator) matrices
Sysq : initial q-state-space system, to be converted in δ-state-space
Delta : ∆ parameter of the δ-realization
isDeltaExact : 1 (default value) if ∆ is exactly implemented

: 0 else

Description :
The system considered is described by the equations{

δ[X(k)] = AδX(k) +BδU(k)
Y (k) = CδX(k) +DδU(k) (97)

where the δ-operator is defined by

δ ,
q − 1

∆
(98)

and ∆ is a strictly positive constant2.
The (finite precision) equivalent system, in the implicit state-space formalism,
is given by In 0 0

−∆In In 0
0 0 Ip

T (k + 1)
X(k + 1)
Y (k)

 =

0 Aδ Bδ
0 In 0
0 Cδ Dδ

T (k)
X(k)
U(k)

 (99)

If the system is given in classical state-space (ss object), the equivalent δ-
realization is obtained with :

Aδ =
Aq − In

∆
, Bδ =

Bq
∆
, Cδ = Cq, Dδ = Dq (100)

The isDeltaExact parameter determines WK .

See also :
SSdelta2FWS

References :
[40] R. Middleton and G. Goodwin, Digital Control and Estimation, a unified
approach, Prentice-Hall International Editions, 1990.

7.1.14 SSdelta2FWS

Purpose :
Transform a δ-state-space realization into a FWS object

2In [40], ∆ corresponds to the sampling period, but this constraint is removed in [9]

47

Syntax :
S = SSdelta2FWR(Ad,Bd,Cd,Dd, Delta, isDeltaExact)
S = SSdeltas2FWR(Sysq, Delta, isDeltaExact)

Parameters :
S : FWR object (structuration)
Ad,Bd,Cd,Dd : State-space (δ-operator) matrices
Sysq : initial q-state-space system, to be converted in δ-state-space
Delta : ∆ parameter of the δ-realization
isDeltaExact : 1 (default value) if ∆ is exactly implemented

: 0 else

Description :
The δ-based state-space structure is presented in SSdelta2FWR (see details
therein). All the δ-state-space equivalent realizations (with same size) are given
by the δ-state-space systems

(T−1AδT, T
−1Bδ, CδT,Dδ),

where T is a nonsingular matrix. So there is one parameter in the structuration’s
definition, named T. The equivalent realizations are obtained with U =W = T ,
Y = T−1. If Z0 is the initial realization, the other realizations are obtained with

Z =

T−1

T−1

Ip

Z0

T T
Im

 (101)

See also :
SSdelta2FWR

7.1.15 SSrho2FWR

Purpose :
Transform a ρ-based state-space realization into a FWR object

Syntax :
R = SSrho2FWR(Arho, Brho, Crho, Drho, Gamma, isGammaExact, Delta,
isDeltaExact)
R = SSrho2FWR(Sysq, Gamma, isGammaExact, Delta, isDeltaExact)

48

Parameters :
R : FWR object
Arho, Brho, Crho, Drho : State-space (ρ-operator) matrices
Sysq : Initial classical q-state-space system, to be converted in ρ-

operator realization
Gamma : Vector of γi parameters
isGammaExact : 1 (default value) if we consider that the vector of γi is ex-

actly implemented
: 0 else

Delta : Vector of ∆i

isDeltaExact : 1 (default value) if the vector of ∆i is exactly implemented
: 0 else

Description :
The system considered is described by the equations as follows:{

ρ[X(k)] = AρX(k) +BρU(k)
Y (k) = CρX(k) +DρU(k) (102)

where the ρ-operator is defined by

ρi ,
q − γi

∆i
, 1 6 i 6 n (103)

with γi and ∆i > 0 are two constants to determine. The particular choice γi=0
and ∆i = 1 (resp. γi=1) leads to the shift operator q (resp. the δ-operator).
The (finite precision) equivalent system, in the implicit state-space formalism,
is given by In 0 0

−∆ In 0
0 0 Ip

T (k + 1)
X(k + 1)
Y (k)

 =

0 Aρ Bρ
0 γ 0
0 Cρ Dρ

T (k)
X(k)
U(k)

 (104)

where
∆ = diag(∆1 · · · ∆n), γ = diag(γ1 · · · γn)

If the system is given in classical state-space (ss object), the equivalent ρ-
realization is obtained with :

Aρ = ∆−1(Aq − γ), Bρ = ∆−1Bq, Cρ = Cq, Dρ = Dq (105)

The isDeltaExact and the isGammaExact parameters determine respectively
WK and WP .

See also :
SSrho2FWS, SSdelta2FWR

7.1.16 SSrho2FWS

Purpose :
Transform a ρ-state-space realization into a FWS object

49

Syntax :
S = SSrho2FWS(Arho, Brho, Crho, Drho, Gamma, isGammaExact, Delta,
isDeltaExact)
S = SSrho2FWS(Sysq, Gamma, isGammaExact, Delta, isDeltaExact)

Parameters :
S : FWR object (structuration)
Arho, Brho, Crho, Drho : State-space (ρ-operator) matrices
Sysq : initial classical state-space system, to be converted in ρ-

operator realization
Gamma : Vector of γi parameters
isGammaExact : 1 (default value) if we consider that the vector of γi is ex-

actly implemented
: 0 else

Delta : Vector of ∆i

isDeltaExact : 1 (default value) if the vector of ∆i is exactly implemented
: 0 else

Description :
The ρ-based state-space structure is presented in
funcName[@FWR/SSrho2FWR]SSrho2FWR (see details therein). All equiva-
lent δ-state-space realizations (with same size) can be obtained by two methods,
namely, the similarity transformation which is specified by a nonsingular ma-
trix T such that the corresponding ρ-state-space systems, after the coordinate
transformation, can be described as (T−1AρT, T

−1Bρ, CρT,Dρ) and the mod-
ification of operator which is achieved by choosing different ∆i and/or γi. So
there are by consequence three parameters in the structuration’s definition, T,
∆ and γ.

See also :
SSrho2FWR

7.2 Private functions

Some functions internally used are described here:

complexFFT Create FFT with complex coefficients (for FFT2FWR)
strideM Create a stride permutation matrix (for FFT2FWR)
twiddleM Create a diagonal matrix of twiddle factors (for

FFT2FWR)

7.2.1 complexFFT

Purpose :
Create FFT with complex coefficients (for FFT2FWR) (matrices J,L,N and S

50

are used)

Syntax :
[J,L,N,S] = complexFFT(n, toSimplify)

Parameters :
J,L,N,S : FWR matrices with complex coefficients
n : size of the FFT
toSimplify : 1 (default) if the simplification (level=1) is done at each

recursive step

Description :
This function is called by FFT2FWR

See also :
FFT2FWR, simplify, strideM, twiddleM

7.2.2 strideM

Purpose :
Create a stride permutation matrix (for FFT2FWR)

Syntax :
L = strideM(r,n)

Parameters :
L : stride permutation matrix
r,n : parameters

Description :
Create a stride permutation matrix. This function is used by FFT2FWR.
This matrix L n

r is the stride permutation matrix that maps the vector elements
indices j as:

L rs
r : j 7→

{
jr mod rs− 1 for 0 6 j 6 rs− 2
rs− 1 for j = rs− 1

(106)

See also :
FFT2FWR

7.2.3 twiddleM

Purpose :
Create a diagonal matrix of twiddle factors (for FFT2FWR)

51

Syntax :
T = twiddleM(r,n)

Parameters :
T : twiddle factors matrix
r,n : n decomposition : n = rs

Description :
Create a diagonal matrix of twiddle factors. This function is used by FFT2FWR.
This matrix T n

s is defined by

T rs
s ,

r−1⊕
j=0

diag
(
ω0
n, . . . , ω

s−1
n

)−j
(107)

See also :
FFT2FWR

52

7.3 FWR class methods

algorithmCfloat Return the algorithm associated to this realization.
algorithmLaTeX Return the pseudocode algorithm described in LATEX
computationalCost Give the number of additions and multiplications im-

plied in the realization
computeW Compute (or update) the weighting matrices (WJ to

WS , and WZ) of a FWR object
display Display the realization (dimensions and Z)
double Convert FWR object to double (return Z matrix)
FWR FWR class’ constructor
FWRmat2LaTeX Display a matrix (Z or a sensitivity matrix) in

LATEX(with pmat
get Get some properties of a FWR object
implementLaTeX Return the associated fixed-point algorithm described

in LATEX
implementMATLAB Create the associated fixed-point algorithm in Matlab

language
implementVHDL Create the associated fixed-point algorithm in VHDL
l2scaling Perform a L2-scaling on the FWR
MsensH Compute the open-loop transfer function sensitivity

measure (and the
MsensH cl Compute the closed-loop transfer function sensitivity

measure (and the
MsensPole Compute the open-loop pole sensitivity measure
MsensPole cl Compute the closed-loop pole sensitivity measure
Mstability Compute the closed-loop pole sensitivity stability re-

lated measure
mtimes Multiply two FWR (put them in cascade)
ONP Compute the Output Noise Power for a FWR object

with Roundoff Before
plus add two FWR object (put them in parallel)
quantized Return the quantized realization, according to a fixed-

point implementation scheme
realize Numerically computes the outputs, states and interme-

diate variables with a given input U.
relaxedl2scaling Perform a relaxed-L2-scaling on the FWR
RNG Compute the open-loop Roundoff Noise Gain
RNG cl Compute the closed-loop Roundoff Noise Gain
set Set some properties of a FWR object
setFPIS Set the Fixed-Point Implementation Scheme (FPIS) of

an FWR object
simplify Simplify (if possible) a FWR, by removing the non-

necessary intermediate variables and states

53

size Return the size of the FW Realization
ss Convert a FWR object into a ss (state-space) object

(equivalent state-space)
subsasgn Subscripted assign for FWR object
subsref Subscripted reference for FWR object
tf Convert a FWR object into a tf object (transfer func-

tion)
TradeOffMeasure cl Compute a (pseudo) tradeoff closed-loop measure
transform Perform a UYW-transformation (similarity on Z)

7.3.1 algorithmCfloat

Purpose :
Return the algorithm associated to this realization. The algorithm is written in
C-code with float

Syntax :
code = algorithmCfloat(R, funcName)

Parameters :
code : resulting C-code (with float)
R : FWR object
funcName : name of the C-function (default=myFilter)

Description :
Transform in C-code with float the algorithm of the realization:

[i] JT (k + 1)←MX(k) +NU(k)
[ii] X(k + 1)← KT (k + 1) + PX(k) +QU(k)
[iii] Y (k)← LT (k + 1) +RX(k) + SU(k)

All the operation with matrices are expanded, and null multiplications are re-
moved, identity multiplications are simplified, etc.
The input or a pointer to the vector of inputs is given to the function. The
function returns the output or a pointer to a vector of inputs.
The intermediate variables are stored in a variable T. The states are stored in
static variables xn and xnp (xnp is not necessary if P is upper triangular), and
a permutation of the vector (a permutation of the pointer to these vector) is
performed for the next call.

Example :

>> algorithmCfloat(R)
ans =

54

float myFilter(float u)
{
// states

static float* xn = (float*) calloc(8*sizeof(float));
// intermediate variables

float T = -0.6630104844*xn[0] + 2.9240526562*xn[1] +
-4.8512758825*xn[2]

+ 3.5897338871*xn[3] + 0.0000312390*xn[4] + 0.0001249559*xn[5]
+ 0.0001874339*xn[6] + 0.0001249559*xn[7] + 0.0000312390*u ;
// output(s)

y = T ;
// states

xn[0] = xn[1];
xn[1] = xn[2];
xn[2] = xn[3];
xn[3] = T ;
xn[4] = xn[5];
xn[5] = xn[6];
xn[6] = xn[7];
xn[7] = u ;
}

See also :
algorithmLaTeX

7.3.2 algorithmLaTeX

Purpose :
Return the pseudocode algorithm described in LATEX(to be used with package
algorithm2e)

Syntax :
code = algorithmLaTeX(R)
code = algorithmLaTeX(R, caption)

Parameters :
R : FWR object
caption : caption used to describe the algorithm

: (default=’Pseudocode algorithm ...’)

55

Description :
Return a LATEX-code that describe the algorithm of the realization:

[i] JT (k + 1)←MX(k) +NU(k)
[ii] X(k + 1)← KT (k + 1) + PX(k) +QU(k)
[iii] Y (k)← LT (k + 1) +RX(k) + SU(k)

All the operation with matrices are expanded, and null multiplications are re-
moved, identity multiplications are simplified, etc.
The package algorithm2e is used.
The file @FWR/private/myFilter.tex.template is used as a template.

Example :
The following LATEX-code is produced by this function:

\begin{algorithm}[h]
\caption{Pseudocode algorithm ...}
\KwIn{u: real}
\KwOut{y: real}
\KwData{xn, xnp: array [1..13] of reals}
\SetLine
\Begin{
\tcp{\emph{Intermediate variables}}
$xnp(1) \leftarrow 0.5529838718*xn(1) + -0.5379265439*xn(2) +

0.0291718129*xn(3) + 0.6715678041*u $\;
$xnp(2) \leftarrow 0.5379265439*xn(1) + 0.0971133953*xn(2) +

-0.3562792507*xn(3) + -0.3237597311*u $\;
$xnp(3) \leftarrow 0.0291718129*xn(1) + 0.3562792507*xn(2) +

-0.0728567423*xn(3) + 0.0792887747*u $\;
\tcp{\emph{Outputs}}
$y \leftarrow 0.6715678041*xn(1) + 0.3237597311*xn(2) +

0.0792887747*xn(3) + 0.0985311609*u $\;
\tcp{\emph{Permutations}}
$xn \leftarrow xnp$\;
}
\end{algorithm}

And it corresponds to the algorithm 3:

See also :
algorithmCfloat, implementLaTeX

7.3.3 computationalCost

Purpose :
Give the number of additions and multiplications implied in the realization

56

Input: u: real
Output: y: real
Data: xn, xnp: array [1..13] of reals
begin

// Intermediate variables

xnp(1)← 0.5529838718 ∗ xn(1) +−0.5379265439 ∗ xn(2) +
0.0291718129 ∗ xn(3) + 0.6715678041 ∗ u;
xnp(2)← 0.5379265439 ∗ xn(1) + 0.0971133953 ∗ xn(2) +
−0.3562792507 ∗ xn(3) +−0.3237597311 ∗ u;
xnp(3)← 0.0291718129 ∗ xn(1) + 0.3562792507 ∗ xn(2) +
−0.0728567423 ∗ xn(3) + 0.0792887747 ∗ u;
// Outputs

y ← 0.6715678041 ∗ xn(1) + 0.3237597311 ∗ xn(2) + 0.0792887747 ∗
xn(3) + 0.0985311609 ∗ u;
// Permutations

xn← xnp;
end

Algorithm 3: Pseudocode algorithm ...

Syntax :
[add, mul] = computationalCost(R, tol)

Parameters :
add : number of additions
mul : number of multiplications
R : FWR object
tol : tolerance (default value = 1e-8)

Description :
The number of additions and multiplications is based on the number of trivial
parameters and null parameters.
The evaluation is based on the following proposition, applied on the three steps
[i], [ii] and [iii] of algorithm (4) :

Proposition 4 Let Y ∈ Ra×b be a constant, and V ∈ Rb×1 a variable.
The calculus Y V needs a(b − 1) − n0

Y additions and ab − n1
Y multiplications,

where n0
Y is the number of null elements of Y and n1

Y is the number of trivial
elements (0,1,−1) of Y (these elements don’t imply a multiplication)

Then, the algorithm requires (l + n+ p)(l +m+ n− 1)− l − n0
Z additions and

(l + n+ p)(l +m+ n)− n1
Z multiplications.

7.3.4 computeW

Purpose :
Compute (or update) the weighting matrices (WJ to WS , and WZ) of a FWR

57

object

Syntax :
R = computeW(R,tol)

Parameters :
R : FWR object
tol : tolerance (default=1e-8) (maximal distance to 0, -1 or +1)

Description :
For X in {J,K,L,M,N, P,Q,R, S} and X = Z, the weighting matrices WJ ,
WK , WL, WM , WN , WP , WQ, WR, WS and WZ are computed according to

(WX)ij =
{

0 if |Xij | < ε or |Xij + 1| < ε or |Xij − 1| < ε
1 else (108)

Where ε is the tolerance (1e+ 8 as default value). Here, the proximity to 0 and
±1 are considered (the other power of 2 are not considered).

7.3.5 display

Purpose :
Display the realization (dimensions and Z)

Syntax :
display(R)

Parameters :
R : FWR object

Description :
Display the dimensions (inputs, outputs, states and intermediate variables) and
Z.

Example :

R has 1 input, 1 output, 4 states, and 0 intermediate variable.
3.5897e+00 -1.2128e+00 3.6551e-01 -1.6575e-01 1.5625e-02
4.0000e+00 0 0 0 0
0 2.0000e+00 0 0 0
0 0 5.0000e-01 0 0
1.5174e-02 5.7416e-04 1.7304e-03 1.6844e-04 3.1239e-05

See also :
display

58

7.3.6 double

Purpose :
Convert FWR object to double (return Z matrix)

Syntax :
d = double(R)

Parameters :
d : double
R : FWR object

Description :
return the Z matrix.

See also :
display

7.3.7 FWR

Purpose :
FWR class’ constructor

Syntax :
R = FWR()
R = FWR(R1)
R = FWR(J,K,L,M,N,P,Q,R,S, fp, block)

Parameters :
R : FWR object created
R1 : FWR object to be copied
J,K,...,S : matrices of the realization
fp : fixed-point or floating-point representation

: ’fixed’ (default value) or ’floating’
block : block-representation scheme. The coefficients in a same

block share the same representation (same scale factor,
etc...). Take the following values:

: ’full’: same representation for all coefficients of R
: ’natural’ (default value): blocks are made by matrices

J,K,L,M,N,P,Q,R,S
: ’none’: each coefficient has its proper representation (ac-

cording to its value)

59

Description :
Constructor of the FWR class.
It could create an empty object (l = m = n = p = 0), copy an object or create a
FWR object from matrices J to S: in that case, the other parameters are deduced
(only 0, 1 or −1 are considered as exactly implemented).

See also :
FWS

7.3.8 FWRmat2LaTeX

Purpose :
Display a matrix (Z or a sensitivity matrix) in LATEX(with pmat package). The
non trivial parameters (according to WZ) are in bold.

Syntax :
S = FWRmat2LaTeX(R)
S = FWRmat2LaTeX(R, M, format,tol)

Parameters :
S : string result (to be pasted in LATEXsource)
R : FWR object
M : matrix to print in LATEXformat

: if M is omitted (or empty), Z is printed
: M must have the same size as Z

format : printf format
: default value : ’%0.5g’
: ’%.3e’ for short e format, etc...

tol : tolerance to find trivial parameter (1,-1,0)
: default value: 1e-10

Description :
Display a matrix (Z or a given matrix M, for example a sensitivity matrix) of
a FWR object in a special LATEXformat (with pmat package): the coefficients
with WZ(i,j) non null are in bold.

Example :
The command FWRmat2latex(R), where R is a FWR object, returns:

\begin{pmat}({|...|})
\cr\-
&\mathbf{3.7673} & \mathbf{-1.8552} & \mathbf{1.0013} & \mathbf

{-0.91839} & \mathbf{2} \cr
&\mathbf{4} & 0 & 0 & 0 & 0 \cr
&0 & \mathbf{2} & 0 & 0 & 0 \cr
&0 & 0 & \mathbf{0.5} & 0 & 0 \cr\-

60

&\mathbf{0.90722} & \mathbf{-0.56715} & \mathbf{0.24114} & \
mathbf{-0.16096} & \mathbf{0.48163} \cr

\end{pmat}

When compiled, this LATEXcode produces
3.7673 −1.8552 1.0013 −0.91839 2

4 0 0 0 0
0 2 0 0 0
0 0 0.5 0 0

0.90722 −0.56715 0.24114 −0.16096 0.48163



7.3.9 get

Purpose :
Get some properties of a FWR object (or list the properties if propName is
ignored)

Syntax :
value = get(R, propName)

Parameters :
value : value of the property
R : FWR object
propName : name of the property (string)

Description :
This function is most of the time called by @FWR/subsref.
The value of every field (l, m, n and p ; J, K, L, M, N, P, Q, R and S; Z ; WJ, WK,
WL, WM, WN, WP, WQ, WR and WS ; WZ ; AZ, BZ, CZ and AZ) can be evaluated with
this command, but l, m, n, p, AZ, BZ, CZ and AZ cannot be modified.
Changing Z changes fields J to S, and reciprocally (this is the same with WZ).

See also :
set, subsref, subsasgn, get

7.3.10 implementLaTeX

Purpose :
Return the associated fixed-point algorithm described in LATEX(to be used with
package algorithm2e)

Syntax :
code = implementLaTeX(R)
code = implementLaTeX(R, caption)

61

Parameters :
R : FWR object
caption : caption used to describe the algorithm

: (default = ’Numerical fixed-point algorithm ...’)

Description :
Return the associated fixed-point algorithm in LATEX. It uses the package al-
gorithm2e. All the wordlengths and the fixed-point positions should be first
computed by adjusting the FPIS with @FWR/setFPIS.
The file @FWR/private/myFilter.tex.template is used as a template.

Example :
It returns LATEX-code like this

\begin{algorithm}[h]
\caption{Numerical fixed-point algorithm ...}
\KwIn{u: 16 bits integer}
\KwOut{y: 16 bits integer}
\KwData{xn, xnp: array [1..13] of 16 bits integers}
\KwData{Acc: 32 bits integer}
\SetLine
\Begin{
\tcp{\emph{Intermediate variables}}
$Acc \leftarrow (xn(1) * 18120)$\;
$Acc \leftarrow Acc + (xn(2) * -8813)$\;
$Acc \leftarrow Acc + (xn(3) * 239)$\;
$Acc \leftarrow Acc + (u * 11003)$\;
$xnp(1) \leftarrow Acc >> 15$\;
$Acc \leftarrow (xn(1) * 17627)$\;
$Acc \leftarrow Acc + (xn(2) * 1591)$\;
$Acc \leftarrow Acc + (xn(3) * -2919)$\;
$Acc \leftarrow Acc + (u * -5304)$\;
$xnp(2) \leftarrow Acc >> 14$\;
$Acc \leftarrow (xn(1) * 3824)$\;
$Acc \leftarrow Acc + (xn(2) * 23349)$\;
$Acc \leftarrow Acc + (xn(3) * -2387)$\;
$Acc \leftarrow Acc + (u * 5196)$\;
$xnp(3) \leftarrow Acc >> 15$\;
\tcp{\emph{Outputs}}
$Acc \leftarrow (xn(1) * 22006)$\;
$Acc \leftarrow Acc + (xn(2) * 5304)$\;
$Acc \leftarrow Acc + (xn(3) * 650)$\;
$Acc \leftarrow Acc + (u * 1614)$\;
$y \leftarrow Acc >> 14$\;
\tcp{\emph{Permutations}}
$xn \leftarrow xnp$\;

62

}
\end{algorithm}

That’s correspond to the algorithm 4.

Input: u: 16 bits integer
Output: y: 16 bits integer
Data: xn, xnp: array [1..13] of 16 bits integers
Data: Acc: 32 bits integer
begin

// Intermediate variables

Acc← (xn(1) ∗ 18120);
Acc← Acc+ (xn(2) ∗ −8813);
Acc← Acc+ (xn(3) ∗ 239);
Acc← Acc+ (u ∗ 11003);
xnp(1)← Acc >> 15;
Acc← (xn(1) ∗ 17627);
Acc← Acc+ (xn(2) ∗ 1591);
Acc← Acc+ (xn(3) ∗ −2919);
Acc← Acc+ (u ∗ −5304);
xnp(2)← Acc >> 14;
Acc← (xn(1) ∗ 3824);
Acc← Acc+ (xn(2) ∗ 23349);
Acc← Acc+ (xn(3) ∗ −2387);
Acc← Acc+ (u ∗ 5196);
xnp(3)← Acc >> 15;
// Outputs

Acc← (xn(1) ∗ 22006);
Acc← Acc+ (xn(2) ∗ 5304);
Acc← Acc+ (xn(3) ∗ 650);
Acc← Acc+ (u ∗ 1614);
y ← Acc >> 14;
// Permutations

xn← xnp;
end

Algorithm 4: Numerical fixed-point algorithm ...

See also :
algorithmLaTeX, implementMATLAB, implementVHDL

7.3.11 implementMATLAB

Purpose :
Create the associated fixed-point algorithm in Matlab language (it uses inte-
ger to simulate fixed-point). The algorithm is written in a file (by default, in
’myFilter.m’ file)

63

Syntax :
implementMATLAB(R,fileName)

Parameters :
R : FWR object
fileName : filename of the created function (default=’myFilter’)

Description :
Generate a Matlab file (named ’myFilter.m’ by default) that emulate the fixed-
point algorithm corresponding to the realization. The rounding operations are
realized by the floor function. All the wordlengths and the fixed-point positions
should be first computed by adjusting the FPIS with @FWR/setFPIS.
The file @FWR/private/myFilter.m.template is used as a template.

Example :
It creates a matlab file like

% initialize
u = round(2.^11.*u);
y = zeros(size(u,1), 1);
xn = zeros(3,1);
xnp = zeros(3,1);
for i=1:size(u,1)
% intermediate variables
Acc0 = xn(1) * 18120;
Acc0 = Acc0 + xn(2) * -8813;
Acc0 = Acc0 + xn(3) * 239;
Acc0 = Acc0 + u(i) * 11003;
xnp(1) = floor(Acc0/2^15);
Acc1 = xn(1) * 17627;
Acc1 = Acc1 + xn(2) * 1591;
Acc1 = Acc1 + xn(3) * -2919;
Acc1 = Acc1 + u(i) * -5304;
xnp(2) = floor(Acc1/2^14);
Acc2 = xn(1) * 3824;
Acc2 = Acc2 + xn(2) * 23349;
Acc2 = Acc2 + xn(3) * -2387;
Acc2 = Acc2 + u(i) * 5196;
xnp(3) = floor(Acc2/2^15);
% output(s)
Acc3 = xn(1) * 22006;
Acc3 = Acc3 + xn(2) * 5304;
Acc3 = Acc3 + xn(3) * 650;
Acc3 = Acc3 + u(i) * 1614;
y(i) = floor(Acc3/2^14);
%permutations

64

xn = xnp;
end
y = 2.^-11.*y;

It could be used to compute the fixed-point output of the associated realization,
with the fixed-point algorithm.

>> u=10*rand(1000,1);
>> y=myFilter(u);

See also :
implementLaTeX, implementVHDL

7.3.12 implementVHDL

Purpose :
Create the associated fixed-point algorithm in VHDL two files are generated
’xxxx entity.vhd’ and ’xxx types.vhd’ where xxxx is the name given (’myFilter’
by default)

Syntax :
implementVHDL(R,fileName)

Parameters :
R : FWR object
fileName : name of the function (default=myFilter)

Description :
Generate two VHDL files (named ”myFilter entity.vhd” and ”myFilter types.vhd”
by default) that realized the fixed-point algorithm corresponding to the realiza-
tion.
All the wordlengths and the fixed-point positions should be first computed by
adjusting the FPIS with @FWR/setFPIS.
The files @FWR/private/FP types.vhd.template and @FWR/private/FP entity.vhd.template
are used as a template.

Example :
This function produces a myFilter types.vhdl file

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_arith.all;
use IEEE.STD_LOGIC_SIGNED.all;
-- purpose: filtering (generic fixed-point specificatin)

-- type : sequential/arithmetic

-- inputs : u(n)

-- output : y(n)

65

-- author : automatically generated by

-- date : 08-Dec-2008 18:41:00

package FP_types is
-- input data with FP format (16,4,11)

subtype datain is integer range -2**15 to 2**15-1;
-- filtered output data with FP format (16,4,11)

subtype dataout is integer range -2**15 to 2**15-1;
-- states

subtype state1 is integer range -2**15 to 2**15-1; -- format

(16,5,10)

subtype state2 is integer range -2**15 to 2**15-1; -- format

(16,4,11)

subtype state3 is integer range -2**15 to 2**15-1; -- format

(16,3,12)

-- intermediate variables

end FP_types;

It also produces a myFilter entity.vhdl file

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_arith.all;
use IEEE.STD_LOGIC_SIGNED.all;
library work;
use work.FP_types.all;
entity myFilter is
port (
rstb : in std_logic; -- asynchronous reset asynchrone active

low

clk : in std_logic; -- global clock

u : in datain; -- input data

y : out dataout); -- filtered output

end myFilter;
architecture RTL of myFilter is
-- states

signal xn1 : state1 := 0;
signal xn2 : state2 := 0;
signal xn3 : state3 := 0;
-- intermediate variables

begin
-- output(s)

y <= (xn1 * 22006 + xn2 * 5304 + xn3 * 650 + u * 1614) /
2**14;

S1: process(rstb,clk)
begin
if rstb = ’0’ then -- asynchronous reset

xn1 <= 0;

66

xn2 <= 0;
xn3 <= 0;
elsif clk’event and clk = ’1’ then -- rising clock edge

-- states

xn1 <= (xn1 * 18120 + xn2 * (-8813) + xn3 * 239 + u * 11003) /
2**15;

xn2 <= (xn1 * 17627 + xn2 * 1591 + xn3 * (-2919) + u * (-5304)
) / 2**14;

xn3 <= (xn1 * 3824 + xn2 * 23349 + xn3 * (-2387) + u * 5196) /
2**15;

end if;
end process S1;
end RTL;

See also :
implementLaTeX, implementMATLAB

7.3.13 l2scaling

Purpose :
Perform a L2-scaling on the FWR

Syntax :
R = l2scaling(R, Wcii)
[U,Y,W] = l2scaling(R)

Parameters :
R : FWR object
U,Y,W : transformation matrices applied on R
Wcii : vector (size (1, l + n)) of controllability grammians desired

: if Wcii is omitted, strict L2-scaling is applied (
Wcii=ones(1,n+l))

Description :
Perform a L2-scaling.
The scaling forces the transfer functions from the inputs to the states and the
intermediates variables to have a unitary L2-norm. Theses norms are given by
the diagonal terms of Wc and J−1

(
NN> +MWcM

>) J−>.
The L2-scaling is a UYW-transformation where U and W are diagonal with:

(U)ii =
√

(Wc)ii (109)

(W)ii =
√

(J−1 (NN> +MWcM>) J−>)ii (110)

It is also possible to assign some particular values for the diagonal terms of the
two grammians.

67

See also :
relaxedl2scaling

References :
[8] Y. Feng, P. Chevrel, and T. Hilaire. A practival strategy of an efficient and
sparse FWL implementation of LTI filters. In submitted to ECC’09, 2009.

7.3.14 MsensH

Purpose :
Compute the open-loop transfer function sensitivity measure (and the sensitivity
matrix)

Syntax :
[M MZ] = MsensH(R)

Parameters :
M : sensitivity measure
MZ : sensitivity matrix
R : FWR object

Description :
The open-loop transfer function sensitivity measure is defined by

MW
L2

=
∥∥∥∥δHδZ × rZ

∥∥∥∥2

F

. (111)

where δH
δZ ∈ Rl+n+p×l+n+q is the transfer function sensitivity matrix. It is the

matrix of the L2-norm of the sensitivity of the transfer function H with respect
to each coefficient Zi,j . It is defined by(

δH

δZ

)
i,j

,

∥∥∥∥ ∂H

∂Zi,j

∥∥∥∥
2

, (112)

In SISO case, the MW
L2

measure is equal to

MW
L2

=
∥∥∥∥∂H∂Z × rZ

∥∥∥∥2

2

(113)

and is then an extension to the SIF of the classical state-space sensitivity mea-
sure

ML2 ,

∥∥∥∥∂H∂A
∥∥∥∥2

2

+
∥∥∥∥∂H∂B

∥∥∥∥2

2

+
∥∥∥∥∂H∂C

∥∥∥∥2

2

. (114)

The MW
L2

measure can be evaluated by the following propositions

68

Proposition 5
∂H

∂Z
= H1 ~H2 (115)

where H1 and H2 are defined by

H1 : z 7→ CZ(zIn −AZ)−1M1 +M2 (116)
H2 : z 7→ N2 +N1(zIn −AZ)−1BZ (117)

with

M1 ,
(
KJ−1 In 0

)
, M2 ,

(
LJ−1 0 Ip2

)
, (118)

N1 ,

J−1M
In
0

 , N2 ,

J−1N
0
Im2

 . (119)

Proposition 6 The transfer function sensitivity matrix δH
δZ can be computed as(

δH

δZ

)
i,j

= ‖H1Ei,jH2‖2 (120)

with

H1Ei,jH2 :=

 AZ 0 BZ
M1Ei,jN1 A M1Ei,jN2

M2Ei,jN1 CZ M2Ei,jN2

 (121)

and Ei,j is the matrix of appropriate size with all elements being 0 except the
(i, j)th element which is unity.

Remark 2 In the SISO case, the problem becomes simpler by noting that(
δH

δZ

)
i,j

= ‖(H2H1)i,j‖2 (122)

=

∥∥∥∥∥∥∥
 AZ 0 BZ

M1N1 AZ M1N2

M2N1 CZ M2N2


i,j

∥∥∥∥∥∥∥
2

(123)

The (l + n + 1) × (l + n + 1) H2-norm evaluations here require only l + n + 1
Lyapunov equations to be solved .

See also :
MsensH cl, w prod norm

69

References :
[12] T. Hilaire and P. Chevrel. On the compact formulation of thederivation of
a transfer matrix with respect to another matrix. Technical Report RR-6760,
INRIA, 2008.
[13] T. Hilaire, P. Chevrel, and J.-P. Clauzel. Low parametric sensitivity re-
alization design for FWL implementation of MIMO controllers : Theory and
application to the active control of vehicle longitudinal oscillations. In Proc. of
Control Applications of Optimisation CAO’O6, April 2006.
[17] T. Hilaire, P. Chevrel, and J. Whidborne. A unifying framework for finite
wordlength realizations. IEEE Trans. on Circuits and Systems, 8(54), August
2007.

7.3.15 MsensH cl

Purpose :
Compute the closed-loop transfer function sensitivity measure (and the sensi-
tivity matrix)

Syntax :
[M MZ] = MsensH cl(R, Sysp)

Parameters :
M : sensitivity measure
MZ : sensitivity matrix
R : FWR object
Sysp : plant system (ss object)

Description :
The closed-loop transfer function sensitivity measure is very similar to the open-
loop transfer function sensitivity. It is defined by

M̄W
L2

=
∥∥∥∥δH̄δZ × rZ

∥∥∥∥2

F

. (124)

where δH̄
δZ ∈ Rl+n+p×l+n+q is the transfer function sensitivity matrix. It is the

matrix of the L2-norm of the sensitivity of the transfer function H̄ with respect
to each coefficient Zi,j . It is defined by(

δH̄

δZ

)
i,j

,

∥∥∥∥ ∂H̄

∂Zi,j

∥∥∥∥
2

, (125)

In SISO case, the M̄W
L2

measure is equal to

M̄W
L2

=
∥∥∥∥∂H̄∂Z × rZ

∥∥∥∥2

2

. (126)

The MW
L2

measure can be evaluated by the following propositions[12]

70

Proposition 7
∂H̄

∂Z
= H̄1 ~ H̄2 (127)

where H1 and H2 are defined by

H̄1 : z 7→ C̄
(
zI − Ā

)−1
M̄1 + M̄2 (128)

H̄2 : z 7→ N̄1

(
zI − Ā

)−1
B̄ + N̄2 (129)

with

M̄1 =
(
B2LJ

−1 0 B2

KJ−1 In 0

)
N̄1 =

J−1NC2 J−1M
0 In
C2 0

 (130)

M̄2 =
(
D12LJ

−1 0 D12

)
N̄2 =

J−1ND21

0
D21

 (131)

See also :
MsensH, w prod norm

References :
[12] T. Hilaire and P. Chevrel. On the compact formulation of thederivation of
a transfer matrix with respect to another matrix. Technical Report RR-6760,
INRIA, 2008.
[16] T. Hilaire, P. Chevrel, and J. Whidborne. Low parametric closed-loop sen-
sitivity realizations using fixed-point and floating-point arithmetic. In Proc.
European Control Conference (ECC’07), July 2007.
[18] T. Hilaire, P. Chevrel, and J. Whidborne. Finite wordlength controller real-
izations using the specialized implicit form. Technical Report RR-6759, INRIA,
2008.

7.3.16 MsensPole

Purpose :
Compute the open-loop pole sensitivity measure (and the pole sensitivity ma-
trix) for a FWR object

Syntax :
[M, dlambda dZ, dlk dZ] = MsensPole(R, moduli)

71

Parameters :
M : pole sensitivity measure
dlambda dZ : the pole sensitivity matrix
dlk dZ : pole sensitivity matrices for each pole
R : FWR object
moduli : 1 (default value) : compute ∂|λ|

∂Z (the sensitivity of the mod-
uli of the eigenvalues)

: 0 : compute ∂λ
∂Z (without the moduli)

Description :
The pole sensitivity measure of R is defined by

Ψ =
n∑
k=1

∥∥∥∥∂ |λk|∂Z
× rZ

∥∥∥∥2

F

. (132)

(it is also possible to only condider the sensitivity of λk instead of the sensitivity
of |λk|. This measure can be evaluated with

∂ |λk|
∂Z

=
(
KJ−1 I 0

)> ∂ |λk|
∂A

J−1M
I
0

> (133)

and the following lemma[53]:

Lemma 1 Let M ∈ Rn×n be diagonalisable. Let (λk)16k6n be its eigenvalues,
and (xk)16k6n the corresponding right eigenvectors. Denote Mx ,

(
x1x2 . . . xn

)
and My =

(
y1y2 . . . yn

)
, M−Hx . Then

∂λk
∂M

= y∗kx
>
k ∀k = 1, . . . , n (134)

and
∂ |λk|
∂M

=
1
|λk|

Re

(
λ∗k
∂λk
∂M

)
(135)

where ·∗ denotes the conjugate operation, Re(·) the real part and ·H the transpose
conjugate operator.

A pole sensitivity matrix can also be constructed to evaluate the overall impact
of each coefficient. Let δ|λ|

δZ denote the pole sensitivity matrix defined by

(
δ |λ|
δZ

)
i,j

,

√√√√ n∑
k=1

(
∂ |λk|
∂Zi,j

)2

. (136)

Then, The pole sensitivity measure is then given by:

Ψ =
∥∥∥∥δ |λ|δZ

× rZ
∥∥∥∥2

F

. (137)

72

See also :
MsensPole cl, Mstability, deigdZ, MsensPole

References :
[14] T. Hilaire, P. Chevrel, and J.-P. Clauzel. Pole sensitivity stability related
measure of FWL realization with the implicit state-space formalism. In 5th
IFAC Symposium on Robust Control Design (ROCOND’06), July 2006.
[17] T. Hilaire, P. Chevrel, and J. Whidborne. A unifying framework for finite
wordlength realizations. IEEE Trans. on Circuits and Systems, 8(54), August
2007.

7.3.17 MsensPole cl

Purpose :
Compute the closed-loop pole sensitivity measure (and the pole sensitivity ma-
trix) for a FWR object

Syntax :
[M, dlambdabar dZ, dlbk dZ] = MsensPole cl(R, Sysp, moduli)

Parameters :
M : pole sensitivity measure
dlambdabar dZ : the pole sensitivity matrix
dlbk dZ : pole sensitivity matrices for each pole
R : FWR object
Sysp : plant system (ss object)

moduli : 1 (default value) : compute
∂|λ̄|
∂Z (the sensitivity of the mod-

uli of the eigenvalues)
: 0 : compute ∂λ̄

∂Z (without the moduli)

Description :
This measure is similar to the pole sensitivity measure in open-loop case (see
MsensPole), but the closed-loop poles are now considered (the eigenvalues of
Ā).
The pole sensitivity measure of R is defined by

Ψ̄ =
n∑
k=1

∥∥∥∥∥∂
∣∣λ̄k∣∣
∂Z

× rZ

∥∥∥∥∥
2

F

. (138)

This measure can be evaluated with

∂
∣∣λ̄k∣∣
∂Z

= M̄ t
1op

∂
∣∣λ̄k∣∣
∂A

N̄>1 (139)

73

with

M̄1 =
(
B2LJ

−1 0 B2

KJ−1 In 0

)
N̄1 =

J−1NC2 J−1M
0 In
C2 0

 (140)

and the following lemma[53]:

Lemma 2 Let M ∈ Rn×n be diagonalisable. Let (λk)16k6n be its eigenvalues,
and (xk)16k6n the corresponding right eigenvectors. Denote Mx ,

(
x1x2 . . . xn

)
and My =

(
y1y2 . . . yn

)
, M−Hx . Then

∂λk
∂M

= y∗kx
>
k ∀k = 1, . . . , n (141)

and
∂ |λk|
∂M

=
1
|λk|

Re

(
λ∗k
∂λk
∂M

)
(142)

where ·∗ denotes the conjugate operation, Re(·) the real part and ·H the transpose
conjugate operator.

A pole sensitivity matrix can also be constructed to evaluate the overall impact

of each coefficient. Let
δ|λ̄|
δZ denote the pole sensitivity matrix defined by

(
δ
∣∣λ̄∣∣
δZ

)
i,j

,

√√√√ n∑
k=1

(
∂
∣∣λ̄k∣∣
∂Zi,j

)2

. (143)

Then, The pole sensitivity measure is then given by:

Ψ =

∥∥∥∥∥δ
∣∣λ̄∣∣
δZ
× rZ

∥∥∥∥∥
2

F

. (144)

See also :
MsensPole, Mstability, deigdZ, MsensPole

References :
[18] T. Hilaire, P. Chevrel, and J. Whidborne. Finite wordlength controller
realizations using the specialized implicit form. Technical Report RR-6759,
INRIA, 2008.

7.3.18 Mstability

Purpose :
Compute the closed-loop pole sensitivity stability related measure for a FWR
object

74

Syntax :
M = Mstability(R, Sysp, moduli)

Parameters :
M : pole sensitivity measure
R : FWR object
Sysp : plant system (ss object)

moduli : 1 (default value) : compute
∂|λ̄|
∂Z (the sensitivity of the mod-

uli of the eigenvalues)
: 0 : compute ∂λ̄

∂Z (without the moduli)

Description :
The Pole Sensitivity Stability related Measure (PSSM) is defined by

µ1(Z) , min
16k6nP+n

1−
∣∣λ̄k∣∣

‖WZ‖F

∥∥∥∥∂|λ̄k|∂Z ×WZ

∥∥∥∥
F

. (145)

This measure evaluates how a perturbation, ∆, of the parameters, Z, can cause
instability. It is determined by how close the eigenvalues of Ā are to the unit
circle and by how sensitive they are to the controller parameter perturbation.

See MsensPole cl for the computation of
∂|λ̄k|
∂Z .

See also :
MsensPole cl, Mstability

References :
[18] T. Hilaire, P. Chevrel, and J. Whidborne. Finite wordlength controller
realizations using the specialized implicit form. Technical Report RR-6759,
INRIA, 2008.

7.3.19 mtimes

Purpose :
Multiply two FWR (put them in cascade)

Syntax :
R = R1*R2
R = mtimes(R1,R2)

Parameters :
R : FWR result
R1 : first operand (FWR)
R2 : second operand (FWR)

75

Description :
Put two realization in cascade (see figure 7).

Y (k)U(k)
R1 R2

R

Figure 7: Two realizations in cascade

We consider two realizationsR1 := (J1,K1, L1,M1, N1, P1, Q1, R1, S1) andR2 :=
(J2,K2, L2,M2, N2, P2, Q2, R2, S2) (with compatible size, i.e. p1 = m2).
By introducing an intermediate variable T equal to the output of R1, the re-
sulting realization R can be expressed in the implicit form by :0BBBBBBBB@

J1 0 0 0 0 0

−L1 I 0 0 0 0

0 −N2 J2 0 0 0

−K1 0 0 I 0 0

0 −Q2 −K2 0 I 0

0 −S2 −L2 0 0 I

1CCCCCCCCA

0BBBBB@
T1(k + 1)
T (k + 1)
T2(k + 1)
X1(k + 1)
X2(k + 1)
Y2(k)

1CCCCCA =

0BBBBBBBB@

0 0 0 M1 0 N1

0 0 0 R1 0 S1

0 0 0 0 M2 0

0 0 0 P1 0 Q1

0 0 0 0 P2 0

0 0 0 0 R2 0

1CCCCCCCCA

0BBBBB@
T1(k)
T (k)
T2(k)
X1(k)
X2(k)
U1(k)

1CCCCCA

See also :
plus

7.3.20 ONP

Purpose :
Compute the Output Noise Power for a FWR object with Roundoff Before
Multiplication (RBM) computational scheme

Syntax :
M = ONP(R, roundingMode)

Parameters :
M : output noise power measure
R : FWR object
mode : indicates the truncation mode: ’truncation’ (default) or

’nearest’

Description :
This function computes the Output Noise Power.
Let us consider a realizationR described with the implicit form (4), with transfer

76

function H. When implemented, the steps (i) to (iii) are modified by the add
of noises ξT (k), ξX(k) and ξY (k):

J.T (k + 1)←M.X(k) +N.U(k) + ξT (k)
X(k + 1)←K.T (k + 1) + P.X(k) +Q.U(k) + ξX(k)

Y (k)←L.T (k + 1) +R.X(k) + S.U(k) + ξY (k)
(146)

These noises added depend on:

• the way the computations are organized (the order of the sums) and done,

• the fixed-point representation of the inputs, the outputs,

• and the fixed-point representation chosen for the states, the intermediate
variables and the coefficients.

They are modelled as independent white noise, characterized by their first and
second order moments. Denote ξ the vector with all the added noise sources:

ξ(k) ,

ξT (k)
ξX(k)
ξY (k)

 (147)

Proposition 8 It is then possible to express the implemented system as the
initial system with a noise ξ′(k) added on the output(s) (see figure 8).

+
ξ(k) ξ′(k)

Y (k)U(k)

Hξ
Y ′(k)

R

Figure 8: Equivalent system, with noises extracted

ξ′(k) is the noise ξ(k) through the transfer function Hξ defined by:

Hξ : z → CZ (zIn −AZ)−1
M1 +M2 (148)

with

M1 ,
(
KJ−1 In 0

)
(149)

M2 ,
(
LJ−1 0 Ip2

)
(150)

77

The Output Noise Power is defined as the power of the noises added on the
output

P , Eξ′(k)ξ′(k)> (151)

where the E. is the mean operator.
It is evaluated by [20]:

P = tr
(
ψξ
(
M>2 M2 +M>1 WoM1

))
+ µ>ξ′µξ′ (152)

where µξ′ = (CZ(I −AZ)−1M1 +M2)µξ and Wo is the observability grammian
of the system R. Then, in Roundoff Befor Multiplication (RBM) scheme, the
quantizations only occur at the end of the additions, when the accumulator
result is stored in intermediate variables, states or ouput, and a right-shift of
dADD bits is applied. The lemma 3 recalls the noise produced during shift:

Lemma 3 Let x(k) be a signal with fixed-point format (β + d, α + d). Right
shifting x(k) of d bits is similar to add to x(k) the independent white noise
e(k).
The right shift could round x(k) towards −∞ (truncation: default behaviour)
or toward the nearest integer (nearest rounding: possible with some additional
hardware/software operations [31]). If d > 0, the moments of e(k) are given by:

truncation best roundoff
µe 2−γ−1(1− 2−d) 2−γ−d−1

σ2
e

2−2γ

12 (1− 2−2d) 2−2γ

12 (1− 2−2d)
(153)

else (d 6 0) e(k) is null.

It is now possible to define the moments of ξ(k): Denote γ̄ ,

γTγX
γY

 and define

s by

si ,

{
1 if dADDi > 0
0 otherwise

(154)

Then µξ is given by:

(µξ)i =

{
si2−γ̄i−1 truncation
si2−γ̄i−1−dADD nearest rounding

(155)

and, since these noises are independent, ψξ is diagonal with:

(ψξ)i,i = si
2−2γ̄i

12
(
1− 2−dADD

)
(156)

See also :
setFPIS, RNG

78

References :
[20] T. Hilaire, D. Ménard, and O. Sentieys. Bit accurate roundoff noise analysis
of fixed-point linear controllers. In Proc. IEEE International Symposium on
Computer-Aided Control System Design (CACSD’08), September 2008.

7.3.21 plus

Purpose :
add two FWR object (put them in parallel)

Syntax :
R = R1+R2
R = plus(R1,R2,generalform)

Parameters :
R : FWR result
R1 : first FWR
R2 : second FWR
generalform : (default is true) to use the general form (or a particular

form)

Description :
Put two realization in parallel (see figure 9).

+

R1

R2

U(k) Y (k)

R

Figure 9: Two realizations in parallel

We consider two realizationsR1 := (J1,K1, L1,M1, N1, P1, Q1, R1, S1) andR2 :=
(J2,K2, L2,M2, N2, P2, Q2, R2, S2) (with compatible size, i.e. m1 = m2 and
p1 = p2).
By introducing the intermediate variables T ′1 and T ′2 equal to the output of the
two realizations, the resulting realization R (general form) can be expressed in

79

the implicit form by0BBBBBBBBBBBBB@

J1 0 0 0 0 0 0

−L1 Ip1 0 0 0 0 0

0 0 J2 0 0 0 0

0 0 −L2 Ip2 0 0 0

−K1 0 0 0 In1 0 0

0 0 −K2 0 0 In2 0

0 −Ip 0 −Ip 0 0 Ip

1CCCCCCCCCCCCCA

0BBBBBBB@

T1(k + 1)
T ′
1(k + 1)
T2(k + 1)
T ′
2(k + 1)

X1(k + 1)
X2(k + 1)
Y2(k)

1CCCCCCCA
=

0BBBBBBBBBB@

0 0 0 0 M1 0 N1

0 0 0 0 R1 0 S1

0 0 0 0 0 M2 N2

0 0 0 0 0 R2 S2

0 0 0 0 P1 0 Q1

0 0 0 0 0 P2 Q2

0 0 0 0 0 0 0

1CCCCCCCCCCA

0BBBBBBB@

T1(k)
T ′
1(k)
T2(k)
T ′
2(k)

X1(k)
X2(k)
U1(k)

1CCCCCCCA

If we allow to regroup S1 and S2 in one term S (and changing a bit the
parametrization if S1 and S2 are both non-zero), the resulting realization can
be expressed in a compact form :0BBBBBBB@

J1 0 0 0 0

0 J2 0 0 0

−K1 0 In1 0 0

0 −K2 0 In2 0

−L1 −L2 0 0 Ip

1CCCCCCCA

0BBB@
T1(k + 1)
T2(k + 1)
X1(k + 1)
X2(k + 1)
Y2(k)

1CCCA =

0BBBBBB@
0 0 M1 0 N1

0 0 0 M2 N2

0 0 P1 0 Q1

0 0 0 P2 Q2

0 0 R1 R2 (S1 + S2)

1CCCCCCA

0BBBBBBB@

T1(k)
T ′
1(k)
T2(k)
T ′
2(k)

X1(k)
X2(k)
U1(k)

1CCCCCCCA
If S1 and/or S2 are null, the two forms are equivalent (in finite precision).

See also :
mtimes

7.3.22 quantized

Purpose :
Return the quantized realization, according to a fixed-point implementation
scheme

Syntax :
[Rqt, DeltaZ] = quantized(R);

Parameters :
Rqt : quantized realization (FWR object)
DeltaZ : approximation on Z (it is NOT Z − Z†)
R : FWR object

Description :
According to a fixed-point implementation scheme, this function returns the
realization with quantized coefficients. The binary point position of the coeffi-
cient depends on the computational scheme (Roundoff Before Multiplication or

80

Roundoff After Multiplication) and is given by:

γ̃Z =


γZ if RAM

γADD.11,l+n+m − 1l+n+p,1.

γTγX
γU


>

if RBM
(157)

(γADD is the binary point position of the adders, see [20] and setFPIS).
The new coefficients Z† are then given by

Z† , 2−γZ bZ × 2γZ e (158)

and the approximation ∆Z on Z is

∆Z =
2−γZ

2
×WZ (159)

See also :
setFPIS

References :
[20] T. Hilaire, D. Ménard, and O. Sentieys. Bit accurate roundoff noise analysis
of fixed-point linear controllers. In Proc. IEEE International Symposium on
Computer-Aided Control System Design (CACSD’08), September 2008.

7.3.23 realize

Purpose :
Numerically computes the outputs, states and intermediate variables with a
given input U. Floating-point is used for the computations.

Syntax :
[Y, X, T] = realize(R, U, X0)

Parameters :
Y : outputs
X : states
T : intermediate variables
R : FWR object
U : inputs
X0 : initial states (default=0)

Description :
This function could be usefull to evaluate the magnitude values of the interme-
diate variables and the states.

81

It could also be usefull to compare two different realizations, for example a re-
alization and its quantized one.
It is important to notice that the computations are done in floating-point (the
fixed-point implementation is not considered here).

7.3.24 relaxedl2scaling

Purpose :
Perform a relaxed-L2-scaling on the FWR The wordlength are deduced from
the FPIS if it is defined.

Syntax :
R = lrelaxedl2scaling(R,Umax,delta)
[U,Y,W] = relaxedl2scaling(R,Umax,delta)

Parameters :
R : FWR object
U,Y,W : transformation matrices applied on R
Umax : input maximum magnitude (default: Umax = a power of

2)
delta : security parameter (default: delta=1)

Description :
Perform a relaxed-L2-scaling.
The scaling forces the transfer functions from the inputs to the states and the
intermediates variables to have a L2-norm between 1 and 2. Theses norms are
given by the diagonal terms of Wc and J−1

(
NN> +MWcM

>) J−>.
Denote WcX the controllability grammian of the realization (Wc) and WcT the
controllability grammian related to the intermediate variables. It is given by

WcX =
√

(J−1 (NN> +MWcXM>) J−>) (160)

The relaxed-L2-scaling is a transformation that make the realization satisfies
the constraints (∀1 6 i 6 n)

22αXi

δ2
6 (WcX)i,i < 4

22αXi

δ2
(161)

22αT i

δ2
6 (WcT)i,i < 4

22αT i

δ2
(162)

where

αXi , βXi − βU −F2

(
max

U

)
(163)

αT i , βTi − βU −F2

(
max

U

)
(164)

82

and F2(x) is defined as the fractional value of log2(x):

F2(x) , log2(x)− blog2(x)c (165)

If the wordlength βX and βT are not defined by the FPIS, they are also supposed

to be equal. Moreover, if δ = 1 (default case) and
max

U is a power of 2, then the
realization satisfies the following constraints

1 6 (WcX)ii < 4, 1 6 (WcT)ii < 4, ∀1 6 i 6 n (166)

The L2-scaling is achieveb by a UYW-transformation where U and W are diag-
onal with:

(U)ii = δ
√

(WcX)i,i2
−F2(δ

√
(WcX)i,i)−αXi (167)

(W)ii = δ
√

(WcT)i,i2
−F2(δ

√
(WcT)i,i)−αT i (168)

See also :
l2scaling

References :
[8] Y. Feng, P. Chevrel, and T. Hilaire. A practival strategy of an efficient and
sparse fwl implementation of lti filters. In submitted to ECC?09, 2009.
[11] T. Hilaire. Low parametric sensitivity realizations with relaxed l2-dynamic-
range-scaling constraints. submitted to IEEE Trans. on Circuits & Systems II,
2009.

7.3.25 RNG

Purpose :
Compute the open-loop Roundoff Noise Gain

Syntax :
G = RNG(R)
[G, dZ] = RNG(R,tol)

Parameters :
G : roundoff noise gain
dZ : number of non-trivial parameters (used by @FWS/RNG)
R : FWR object
tol : tolerance on trivial parameters (default=1e-8);

Description :
This function computes the Roundoff Noise Gain (in open-loop context).
The Roudoff Noise Gain is the output noise power computed in a specific com-
putational scheme : the noises are supposed to appear only after each multipli-
cation and are modeled by centered white noise statistically independant.

83

Each noise is supposed to have the same power σ2
0 (determined by the wordlength

choosen for all the variables and coefficients).
The Roundoff Noise Gain is defined by

G ,
P

σ2
0

(169)

where P is the output roundoff noise power. It could be computed by

G = tr
(
dZ(M>2 M2 +M>1 WoM1)

)
(170)

with

M1 ,
(
KJ−1 In 0

)
(171)

M2 ,
(
LJ−1 0 Ip2

)
(172)

and the matrix dZ is a diagonal matrix defined by

(dZ)i,i , number of non-trivial parameters in the ith row of Z (173)

The trivial parameters considered are 0, 1, −1 and powers of 2 because they do
not imply a multiplication.

See also :
RNG cl, RNG

References :
[19] T. Hilaire, D. Ménard, and O. Sentieys. Roundoff noise analysis of finite
wordlength realizations with the implicit state-space framework. In 15th Euro-
pean Signal Processing Conference (EUSIPOC’07), September 2007.

7.3.26 RNG cl

Purpose :
Compute the closed-loop Roundoff Noise Gain

Syntax :
G = RNG(R, Sysp)
[G, dZ] = RNG(R, Sysp, tol)

Parameters :
G : roundoff noise gain
dZ : number of non-trivial parameters (used by @FWS/RNG)
R : FWR object
Sysp : plant (to be controlled)
tol : tolerance on trivial parameters (default=1e-8)

84

Description :
This function computes the Roundoff Noise Gain (in closed-loop context).
The Roudoff Noise Gain is the output noise power computed in a specific com-
putational scheme : the noises are supposed to appear only after each multipli-
cation and are modeled by centered white noise statistically independant.
Each noise is supposed to have the same power σ2

0 (determined by the wordlength
choosen for all the variables and coefficients).
The Roundoff Noise Gain is defined by

Ḡ ,
P̄

σ2
0

(174)

where P̄ is the output roundoff noise power (the gloabl noise added on the
output of the plant). It could be computed by

Ḡ = tr
(
dZ(M̄>2 M̄2 + M̄>1 W̄oM̄1)

)
(175)

with

M̄1 =
(
B2LJ

−1 0 B2

KJ−1 In 0

)
, (176)

M̄2 =
(
D12LJ

−1 0 D12

)
(177)

and the matrix dZ is a diagonal matrix defined by

(dZ)i,i , number of non-trivial parameters in the ith row of Z (178)

The trivial parameters considered are 0, 1 and −1 because they do not imply a
multiplication.

See also :
RNG, RNG cl

References :
[18] T. Hilaire, P. Chevrel, and J. Whidborne. Finite wordlength controller
realizations using the specialized implicit form. Technical Report RR-6759,
INRIA, 2008.

7.3.27 set

Purpose :
Set some properties of a FWR object

Syntax :
R = set(R, propName, value)

85

Parameters :
R : FWR object
propName : name of the property
value : new value for this property

Description :
This function is most of the time called by subsasgn.
The value of every field (l, m, n and p ; J, K, L, M, N, P, Q, R and S; Z ; WJ, WK,
WL, WM, WN, WP, WQ, WR and WS, WZ, AZ, BZ, CZ and AZ) can be evaluated, but l,
m, n, p, AZ, BZ, CZ and AZ cannot be modified.
Changing Z changes fields J to S, and reciprocally (this is the same with WZ).

See also :
get, subsasgn, set

7.3.28 setFPIS

Purpose :
Set the Fixed-Point Implementation Scheme (FPIS) of an FWR object (the
wordlength may be matrices or scalar. The scalar case is used to sed all the
wordlength to the same length)

Syntax :
R = setFPIS(R, betaU, Umax, betaZ, betaT, betaX, betaY, betaADD, betaG,
method)
R = setFPIS(R, FPIS)
R = setFPIS(R, FPISname,Umax)

Parameters :
R : FWR object
FPIS : an other Fixed-Point Implementation Scheme (a structure

with betaU, Umax, betaZ, betaT, betaX, betaY, betaADD,
betaG and method)

FPISname : ’DSP8’ or ’DSP16’
betaU : wordlength of U (inputs)
Umax : maximum value of U (necessary to set γU)
betaZ : wordlength of the coefficients
betaT, betaX, betaY : wordlength of the intermediate variables T, the states X

and the outputs
betaADD : wordlength of the accumulators
betaG : nb of guard bits in the accumulators
method : ’RBM’ (default) Roundoff Before Multiplication

: ’RAM’ Roundoff After Multiplication

86

Description :
This function set the Fixed-Point Implementation Scheme (FPIS). This struc-
ture is composed by:

• the fixed-point format of the input (βU , γU) and its maximum magnitude

value
max

U

• the fixed-point format of the intermediate variables (βT , γT)

• the fixed-point format of the states (βX , γX)

• the fixed-point format of the output (βY , γY)

• the fixed-point format of the coefficients (βZ , γZ)

• the fixed-point format of the accumultor (βADD + βG, γADD) (βG guard
bits)

• the right-shift bits after each scalar product dADD (shiftADD)

• the right-shift bits after each multiplication by a coefficient dZ (shiftZ)

• the computational scheme : Roundoff After Multiplication (RAM) or
Roundoff Before Multiplication (RBM)

The algorithm

[i] JT (k + 1)←MX(k) +NU(k)
[ii] X(k + 1)← KT (k + 1) + PX(k) +QU(k)
[iii] Y (k)← LT (k + 1) +RX(k) + SU(k)

requieres to implement l + n+ p scalar products.
Each scalair product

S =
n∑
i=1

PiEi (179)

where (Pi)16i6n are given coefficients and (Ei)16i6n some bounded variables,
can be implemented according to the algorithms 5 and 6, and where P ′i , E

′
i and

S′i are the integer representation (according to their fixed-point format) to Pi,Ei
and Si.

Add← 0
for i from 0 to n do

Add← (P ′i ∗ E′i) >> di
end
S′i ← Add >> d′i

Algorithm 5: Roundoff After Mul-
tiplication (RAM)

Add← 0
for i from 0 to n do

Add← (P ′i >> di) ∗ E′i
end
S′i ← Add >> d′i

Algorithm 6: Roundoff Before Mul-
tiplication (RBM)

87

Of course, di represent the right-shift after each multiplication and d′i repre-
sent the final shift. They respectively correspond to the dZ and dADD shift in
the SIF algorithm. The user may specify all the wordlengths (βU , βT , βX , βY ,

βADD, βg and βZ) and
max

U . The binary-point positions are deduced by:

γU = βU − 2−
⌊

log2

max

U

⌋
(180)

γTγX
γY

 =

βTβX
βY

− 2.1l+n+p,1 −
⌊

log2

(
‖Hmax‖l1

max

|U |
)⌋

(181)

where 1k,l represents the matrix of Rk×l with all coefficients set to 1, ‖.‖l1 the
l1-norm and

Hmax : z → N1 (zIn −AZ)−1
BZ +N2, (182)

N1 ,

J−1M
In
CZ

 , N2 ,

J−1N
0
DZ

 (183)

The binary point position3 γZ of the coefficients Z are given by:

γZ = βZ − 2.1l+n+p,l+n+m −
⌊

log2 |Z|
⌋

(184)

The fixed-point formats of the additions are given by:

γADD = βADD −max
row

βTβX
βY

− βg −
γTγX
γY

 , α

 (185)

where

α = max
row

βZ − γZ + 1l+n+p,1

βTβX
βU

−
γTγX
γU

>
 (186)

and max
row

(M) returns a column vector with the maximum value of each row of
M .
The final alignments are right shifts of dADD bits, with:

dADD = γADD −

γTγX
γY

 (187)

Denote γ̃Z the final binary point position of the coefficients Z, according to RAM
or RBM scheme, and dZ the shifts needed after each multiplication ((dZ)i,j is

3(γZ)i,j could be −∞ for null coefficients, but it is not a problem because such coefficients
are not implemented

88

the right shift needed after the multiplication by Zi,j) in order to align the
format after each multiplication. Then:

γ̃Z =


γZ if RAM

γADD.11,l+n+m − 1l+n+p,1.

γTγX
γU


>

if RBM
(188)

and

dZ = γ̃Z + 1l+n+p,1.

γTγX
γU

> − γADD.11,l+n+m (189)

(dZ is a null matrix in RBM case).
With dZ , γ̃Z , γADD, dADD, γT , γX and γY , the fixed-point implementation of
the controller is entirely defined.

See also :
quantized, setFPIS

References :
[20] T. Hilaire, D. Ménard, and O. Sentieys. Bit accurate roundoff noise analysis
of fixed-point linear controllers. In Proc. IEEE International Symposium on
Computer-Aided Control System Design (CACSD’08), September 2008.

7.3.29 simplify

Purpose :
Simplify (if possible) a FWR, by removing the non-necessary intermediate vari-
ables and states

Syntax :
Rs = simplify(R, level, tol)

Parameters :
Rs : simplified FWR object
R : FWR to be simplified
level : level of simplification

: 0 : simplify only null terms
: 1(default) : simplify lines with only one term (substitution)
: 2 : simplify lines with 2 terms, etc...
: level¿1 may increase the complexity

tol : tolerance (default=1e-14)

89

Description :
Due to the sparsity of some realizations (for example, the FFT ones created by
FFT2FWR), some simplifications in the realization can be provided. Null interme-
diate variables can appear and must be propagated, and intermediate variables
that are sometimes set equal to an other value (without any other computations)
must be removed. Let consider a realization R := (Z, l,m, n, p). Computing
T (k+1), X(k+1) and Y (k) for each step according to the associated algorithm
is equivalent to compute

Z ′.

T (k + 1)
X(k)
U(k)

 with Z ′ , Z +
(
Il

0

)
(190)

This function simplify (if possible) the realization by applying two transforma-
tions.
The first transform removes the intermediate variables that are null (they could
appear for the FFT realization, because of the real or imaginary parts that are
null). It can be described by the following algorithm:

while it exists i 6 l + n such as Z ′i,• is a null vector do
// Remove i-th intermediate variable or state

remove i-th row and i-th column of Z ′;
decrease l or n;

end
Algorithm 7: Remove the null values

In some cases, various intermediate variables are only equal to another interme-
diate variable.
For example, if T2 ← aT1 and T3 ← bT2, when it is possible to substitute T3 to
T2 if a or b ∈ {−1, 1} (in order to preserve the parametrization).
The algorithm 8 allows the substitution of an intermediate variable by an other
one.

90

while it exists i 6 l such as Z ′i,• has only one non-null element Z ′i,j do
// then we have something like Ti ← aTj
if for all k 6= i, Z ′k,i 6= 0 implies(
Z ′k,j = 0 and

(
Z ′i,j = ±1 or Z ′k,i = ±1

))
then

// Substitution

for 1 6 k 6 l + n+ p such as Z ′k,i 6= 0 do
Z ′k,j ← εZ ′k,i.Z

′
i,j

with ε = sign(k, i).sign(i, j).sign(k, j)

and sign(p, q) =

{
−1 if p 6 l and q 6 l

1 otherwise
end
// Remove i-th intermediate variable

remove i-th row and i-th column of Z ′;
decrease l;

end
end

Algorithm 8: Substitute the intermediate variables
The term ε in that algorithm is introduced to taking in consideration the −J in
the definition of Z (eq. (11))(this −J was introduced in [17] in order to simplify
the sensitivities and roundoff measure).

Remark 3 It is also possible to consider the substitution when Ti is composed
various terms. For example, T3 ← aT1 + bT2 and T4 ← cT3 becomes T4 ←
acT1+bcT2 if c = ±1 or (a = ±1 and b = ±1). In that case, this transformation
can increase the complexity of the computations (since an intermediate variable
that is substituted is used twice or more).

The input level can set the level of the substitution. 0 means that only the
null terms are removed, and 1 only the terms like T2 ← T3 are removed. With a
greater value, the function consider the substitution if an intermediate variable
is composed from various terms, and level gives the maximum number of terms.

Example :
The FFT4 transform first corresponds to the following algorithm (see FFT2FWR)
When only the null terms are removed (with level=0), the algorithm becomes:
Then, with a complete substitution (level=1), the final algorithm is:

See also :
FFT2FWR

7.3.30 size

Purpose :
Return the size of the FW Realization

91

Syntax :
lmnp = size(R)
[l,m,n,p] = size(R)

Parameters :
lmnp : vector [l,m,n,p]
l : nb of intermediate variables
m : nb of inputs
n : nb of states
p : nb of outputs
R : FWR object

Description :
Overload of the classical size function.

7.3.31 ss

Purpose :
Convert a FWR object into a ss (state-space) object (equivalent state-space)

Syntax :
S = ss(R,Te)

Parameters :
S : ss object
R : FWR object
Te : period (default=1)

Description :
Give the equivalent state-space (ss object). It is defined with matrices AZ , BZ ,
CZ and DZ (see eq. (7) and (8)).

Example :
>>bode(ss(R));
where R is a FWR object, allows to plot its Bode frequency response.

See also :
tf, ss

7.3.32 subsasgn

Purpose :
Subscripted assign for FWR object here, R.prop=value is equivalent to set(R,’prop’,value)

Syntax :
R = subsasgn(R,Sub,value)

92

Parameters :
R : FWR object
Sub : subassignment layers
value : value of the assignation

Description :
These functions are called internally when operators [], () and . are applied
on a FWR object.
Only the operator . is valid, and links to set and get functions. The command
R.field returns the field field of R (internally, get(R,’field’) is called), and
R.field=vaue set the field field of R

Example :
R.P .* R.WP
R.P(1,:)
R.Z(3,3) = 0;
R.WZ = zeros(size(R.WZ));

See also :
set, get, subsref, subsasgn

7.3.33 subsref

Purpose :
Subscripted reference for FWR object here, R.prop is equivalent to get(R,prop)

Syntax :
value = subsref(R,Sub)

Parameters :
value : returned value
R : FWR object
Sub : layers of subreferencing

Description :
These functions are called internally when operators [], () and . are applied
on a FWR object.
Only the operator . is valid, and links to set and get functions. The command
R.field returns the field field of R (internally, get(R,’field’) is called), and
R.field=vaue set the field field of R

Example :
R.P .* R.WP
R.P(1,:)
R.Z(3,3) = 0;
R.WZ = zeros(size(R.WZ));

93

See also :
set, get, subsasgn, subsref

7.3.34 tf

Purpose :
Convert a FWR object into a tf object (transfer function)

Syntax :
H = tf(R,Te)

Parameters :
H : tf object
R : FWR object
Te : period (default=1)

Description :
Give the transfer function of the realization. It is defined with matrices AZ ,
BZ , CZ and DZ (see eq. (7) and (8)) by:

H : z 7→ CZ (zIn −AZ)−1
BZ +DZ (191)

See also :
ss, tf

7.3.35 TradeOffMeasure cl

Purpose :
Compute a (pseudo) tradeoff closed-loop measure with the MsensH cl, Msen-
sPole cl, RNG cl

Syntax :
M = TradeOffMeasure cl(R, Sysp, MH, MP, MRNG)

Parameters :
M : measure value
R : FWR object
Sysp : plant system (ss object)
MH,MP,MRNG : optimal value of the MsensH cl, MsensPole cl and RNG cl

measure

Description :
Even if a tradeoff measure like this one is not the best solution for multi-objective
optimal realization, it is interesting to look for a realization that is good enough

94

for the three measures M̄W
L2

, Ψ̄ and Ḡ. This (pseudo) tradeoff measure is defined
by

¯TO(Z) ,
M̄W
L2

(Z)

M̄W opt
L2

+
Ψ̄(Z)
Ψ̄opt

+
Ḡ(Z)
Ḡopt

(192)

where M̄W opt
L2

, Ψ̄opt and Ḡopt are the optimal values for these respectives mea-
sure.

See also :
MsensH cl, MsensPole cl, RNG cl

References :
[18] T. Hilaire, P. Chevrel, and J. Whidborne. Finite wordlength controller
realizations using the specialized implicit form. Technical Report RR-6759,
INRIA, 2008.

7.3.36 transform

Purpose :
Perform a UYW-transformation (similarity on Z)

Syntax :
R = transform(R, U, Y, W)

Parameters :
R : FWR object
U,Y,W : transformation matrices

Description :
The UYW-transformation is defined as a particular similarity on Z:

Z̃ =

Y U−1

Ip

Z

W U
Im

 (193)

where U , W, Y are non-singular matrices, are equivalent to R.

7.4 FWR private functions

compute rZ Compute the matrix rZ
computeAZBZCZDZWcWo Compute the AZ , BZ , CZ and DZ matrices and the

gramians of a FWR object
computeJtoS Compute the J , K, L, M , N , P , Q, R, S, WJ , ..., WJ ,

of a FWR object

95

computelmnp Compute the dimension l, m, n and p of a FWR ob-
ject (from its parameters J , K, ..., S) and check the
dimensions

computeZ Compute the Z and WZ of a FWR object from its pa-
rameters J , ..., S, WJ , ..., WS .

deigdZ Compute M>1
∂λ
∂AM

>
2 .

mylyap Solve the continuous-time Lyapunov equations
scalprodCfloat Return the C-code corresponding to a fixed-point scalar

product
scalprodMATLAB Write the MATLAB code corresponding to a fixed-

point scalar product
scalprodVHDL Write the VHDL code corresponding to a fixed-point

scalar product
w prod norm Compute the weighting L2-norm of the system com-

posed by G~H = V ec(G).(V ec(H>))>

w prod norm SISO Compute the weighting L2-norm of the system com-
posed by G~H = V ec(G).(V ec(H>))>

7.4.1 compute rZ

Purpose :
Compute the matrix rZ

Syntax :
R = compute rZ(R)

Parameters :
R : FWR object

Description :

Internal function

During the quantization process, Z is perturbed to Z + rZ ×∆ where

rZ ,

{
WZ for fixed-point representation,
2ηZ ×WZ for floating-point representation,

(194)

and ηZ is such that

(ηZ)i,j ,

{
the largest absolute value of
the block in which Zi,j resides. (195)

This function considered the fp and block records of the FWR class, and rZ
is build according to the fixed-point or floating-point and the possible block
representation [17].

96

References :
[17] T. Hilaire, P. Chevrel, and J. Whidborne. A unifying framework for finite
wordlength realizations. IEEE Trans. on Circuits and Systems, 8(54), August
2007.

7.4.2 computeAZBZCZDZWcWo

Purpose :
Compute the AZ , BZ , CZ and DZ matrices and the gramians of a FWR object

Syntax :
R=updateAZBZCZDZWoWc(R)

Parameters :
R : FWR object

Description :

Internal function

Compute the matrices AZ , BZ , CZ , DZ and the controllability and observability
grammians associated to a FWR object.
AZ ∈ Rn×n, BZ ∈ Rn×m, CZ ∈ Rp×n and DZ ∈ Rp×m are given by:

AZ = KJ−1M + P, BZ = KJ−1N +Q, (196)

CZ = LJ−1M +R, DZ = LJ−1N + S. (197)

and the grammians are the solutions of the Lyapunov equations

Wc = AZWcA
>
Z +BZB

>
Z (198)

Wo = A>ZWoAZ + C>ZCZ (199)

7.4.3 computeJtoS

Purpose :
Compute the J , K, L, M , N , P , Q, R, S, WJ , ..., WJ , of a FWR object from
the Z and WZ matrices of this object

Syntax :
R=computeJtoS(R)

Parameters :
R : FWR object

97

Description :

Internal function

This function updates the matrices J , K, L, M , N , P , Q, R, Q, WJ , WK , WL,
WM , WN , WP , WQ, WR and WS from the matrices Z and WZ .
It is called when a new value for Z or WZ is given.

See also :
computeZ

7.4.4 computelmnp

Purpose :
Compute the dimension l, m, n and p of a FWR object (from its parameters J ,
K, ..., S) and check the dimensions

Syntax :
R=updatelmnp(R)

Parameters :
R : FWR object

Description :

Internal function

Compute the size l, m, n and p of a FWR realization.
It also check the concordance of the matrices J , K, L, M , N , P , Q, R, S sizes.

7.4.5 computeZ

Purpose :
Compute the Z and WZ of a FWR object from its parameters J , ..., S, WJ , ...,
WS .

Syntax :
R = updateZ(R)

Parameters :
R : FWR object

98

Description :

Internal function

This function updates the matrices Z and WZ from the matrices J , K, L, M ,
N , P , Q, R, Q, WJ , WK , WL, WM , WN , WP , WQ, WR and WS .
It is called when a new value for one of these matrices is given.

See also :
computeJtoS

7.4.6 deigdZ

Purpose :
Compute M>1

∂λ
∂AM

>
2 . This function used to compute the pole sensitivity (open-

loop and closed-loop)

Syntax :
[dlambda dZ, dlk dZ] = dleigdZ(A, M1, M2, Z, moduli)

Parameters :
dlambda dZ : the pole sensitivity matrix
dlk dZ : pole sensitivity matrices for each pole
A : matrix from whom the eigenvalues are taken
M1,M2 : such that ∂λ

∂Z = M1> ∂λ∂AM2>

moduli : 1 (default value) : compute ∂|λ|
∂Z (the sensitivity of the mod-

uli of the eigenvalues)
: 0 : compute ∂λ

∂Z (without the moduli)

Description :

Internal function

This function computes

M>1
∂λk
∂A

M>2 (200)

where the λk are the eigenvalues of A.
This is done by the followin lemma[53]:

Lemma 4 Let M ∈ Rn×n be diagonalisable. Let (λk)16k6n be its eigenvalues,
and (xk)16k6n the corresponding right eigenvectors. Denote Mx ,

(
x1, x2, . . . , xn

)
and My =

(
y1, y2, . . . , yn

)
, M−Hx . Then

∂λk
∂M

= y∗kx
>
k ∀k = 1, . . . , n (201)

99

and
∂ |λk|
∂M

=
1
|λk|

Re

(
λ∗k
∂λk
∂M

)
(202)

where ·∗ denotes the conjugate operation, Re(·) the real part and ·H the transpose
conjugate operator.

See also :
MsensPole, MsensPole cl, Mstability

7.4.7 mylyap

Purpose :
Solve the continuous-time Lyapunov equations adapted from lyap.m (S.N. Bangert
The MathWorks, Inc.)

Syntax :
X = mylyap(A, B, C, ua, ta)

Parameters :
X : solution of the continuous-time Lyapunov equation
A,B,C : parameters of the equation
ua,ta : precomputed values

Description :

Internal function

This function executes the same algorithm described in lyap.m (S.N. Bangert
The MathWorks, Inc.), except that the values ua and ta are already computed.
It permits to save some computational time when a lot of Lyapunov equations
have to be solved with the same value A.

See also :
w prod norm SISO

7.4.8 scalprodCfloat

Purpose :
Return the C-code corresponding to a fixed-point scalar product (the vec-
tor of coefficient P by the vector of variables name). Ex: P(1)*name(1) +
P(2)*name(2) + ... + P(n)*name(n)

Syntax :
S = scalprodCfloat(P, name)

100

Parameters :
S : returned string
P : vector of coefficients used in the scalar product
name : name of the variables

Description :

Internal function

This function is called by algorithmCfloat for each scalar product to be done.
It returns the C-code corresponding.
P correspond to the vector of coefficients to use, and name to the vector of
variables’ name to use.

See also :
algorithmCfloat, scalprodVHDL, scalprodMATLAB

7.4.9 scalprodMATLAB

Purpose :
Write the MATLAB code corresponding to a fixed-point scalar product (the
vector of coefficient P by the vector of variables name). Ex: P(1)*name(1) +
P(2)*name(2) + ... + P(n)*name(n)

Syntax :
scalprodMATLAB(fiel, P, name, gamma, shift, strAcc)

Parameters :
file : file id, where the scalar product is written
P : vector of coefficients used in the scalar product
name : name of the variables
gamma : fractional part of the coefficients P
shift : shift to apply after each multiplication
strAcc : name of the accumulator

Description :

Internal function

This function is called by implementMATLAB for each scalar product to be done.
It write the MATLAB code corresponding in a file.
P correspond to the vector of coefficients to use, and name to the vector of
variables’ name to use.

See also :
implementMATLAB, scalprodCfloat, scalprodVHDL

101

7.4.10 scalprodVHDL

Purpose :
Write the VHDL code corresponding to a fixed-point scalar product (the vec-
tor of coefficient P by the vector of variables name). Ex: P(1)*name(1) +
P(2)*name(2) + ... + P(n)*name(n)

Syntax :
S = scalprodVHDL(file, P, name, gamma, shift, strAcc)

Parameters :
S : returned string
P : vector of coefficients used in the scalar product
name : name of the variables
gamma : fractional part of the coefficients P
shift : shift to apply after each multiplication
finalshift : shift to apply at the end

Description :

Internal function

This function is called by implementVHDL for each scalar product to be done.
It write the VHDL code corresponding in a file.
P correspond to the vector of coefficients to use, and name to the vector of
variables’ name to use.

See also :
implementVHDL, scalprodCfloat, scalprodMATLAB

7.4.11 w prod norm

Purpose :
Compute the weighting L2-norm of the system composed byG~H = V ec(G).(V ec(H>))>

Each transfert function is weighted this the weighting matrice W. G and H are
defined by their state-space matrices Ag,Bg,Cg,Dg and Ah,Bh,Ch,Dh.

Syntax :
[N, MX]= w prod norm(Ag,Bg,Cg,Dg, Ah,Bh,Ch,Dh, W)

Parameters :
N : weighted norm
MX : sensibility matrix of G~H
Ag,Bg,Cg,Dg : state-space matrices of G
Ah,Bh,Ch,Dh : state-space matrices of H
W : weighting matrice

102

Description :

Internal function

From two MIMO state-space system G and H, this function compute the weight-
ing L2-norm of the system composed by

G~H = V ec(G).(V ec(H>))> (203)

Each transfert function is weighted this the weighting matrice W G and H
are defined by theur state-space matrices G := (AG, BG, CG, DG) and H :=
(AH , BH , CH , DH) The results N and MX are given by:

MXij ,
∥∥∥(G~H)ijWij

∥∥∥
2

(204)

N , ‖(G~H)×W‖22 (205)

= ‖MX‖2F (206)

This function is used by MsensH and MsensH cl.

See also :
MsensH, MsensH cl, w prod norm SISO

7.4.12 w prod norm SISO

Purpose :
Compute the weighting L2-norm of the system composed byG~H = V ec(G).(V ec(H>))>

Each transfert function is weighted this weighting matrice W. G and H are
SIMO and MISO state-space system defined by their state-space matrices Ag,Bg,Cg,Dg
and Ah,Bh,Ch,Dh.

Syntax :
[N, MX]= w prod normSISO(Ag,Bg,Cg,Dg, Ah,Bh,Ch,Dh, W)

Parameters :
N : weighted norm
MX : sensibility matrix of G~H
Ag,Bg,Cg,Dg : state-space matrices of G
Ah,Bh,Ch,Dh : state-space matrices of H
W : weighting matrice

103

Description :

Internal function

From two SIMO and MISO state-space system G and H, this function compute
the weighting L2-norm of the system composed by

G~H = V ec(G).(V ec(H>))> (207)

Each transfert function is weighted this the weighting matrice W G and H
are defined by theur state-space matrices G := (AG, BG, CG, DG) and H :=
(AH , BH , CH , DH) The results N and MX are given by:

MXij ,
∥∥∥(G~H)ijWij

∥∥∥
2

(208)

N , ‖(G~H)×W‖22 (209)

= ‖MX‖2F (210)

This function is used by MsensH and MsensH cl. In that case, due to the SISO
size of the transfer function (G~H)ij , it is possible to use that

MXij = ‖(GH)i,j‖2 (211)

=

∥∥∥∥∥∥∥
 AG 0 (BG)i

BHCG AH BHDG

DHCG CH DHDG


i,j

∥∥∥∥∥∥∥
2

(212)

See also :
MsensH, MsensH cl, w prod norm

104

7.5 FWS class methods

display Display the realization (dimensions, Z and the param-
eters)

FWS Constructor of the FWS class.
genCostFunction G eneric cost function for optimization of a FWS
get Get some properties of a FWS object (or list the prop-

erties if propName is ignored)
getValues Return the parameters’ value (cells of values)
MsensPole Compute the open-loop pole sensitivity measure for a

FWS object.
MsensPole cl Compute the closed-loop pole sensitivity measure for a

FWS object.
Mstability Compute the closed-loop pole sensitivity stability re-

lated measure for a FWS object.
optim Find the optimal realization, according to the

measureFun measure, in the set of structured equiv-
alent realizations

RNG Compute the open-loop Roundoff Noise Gain for a
FWS.

RNG cl Compute the closed-loop Roundoff Noise Gain for a
FWS.

set Set some properties of a FWS object
setFPIS Set the Fixed-Point Implementation Scheme (FPIS) of

an FWS object
ss Convert a FWS object into a ss (state-space) object

(equivalent state-space)
subsasgn Subscripted assign for FWS object.
subsref Subscripted reference for FWS object.
tf Convert a FWS object into a tf object (transfer func-

tion)

7.5.1 display

Purpose :
Display the realization (dimensions, Z and the parameters)

Syntax :
display(S)

Parameters :
S : FWS object

Description :
Display the dimensions (inputs, outputs, states and intermediate variables), Z

105

and the associated parameters.

Example :

has 1 input, 1 output, 3 states, and 0 intermediate variable.
Z=
5.5298e-01 -5.3793e-01 2.9172e-02 6.7157e-01
5.3793e-01 9.7113e-02 -3.5628e-01 -3.2376e-01
2.9172e-02 3.5628e-01 -7.2857e-02 7.9289e-02
6.7157e-01 3.2376e-01 7.9289e-02 9.8531e-02
T=
1 0 0
0 1 0
0 0 1

See also :
display

7.5.2 FWS

Purpose :
Constructor of the FWS class. A structuration is characterized by an initial
realization and a way to transforme this realization

Syntax :
S = FWS(Rini, UYWfun, Rfun, dataFWS, param1Name, param1Value, param2Name,
param2Value, ...)

Parameters :
S : FWS object
Rini : initial realization (FWR object)
UYWfun : handle to a function that link the parameters to the trans-

formation matrices U,Y and W
Rfun : handle to a function that link the parameters to the new

realization
: only ONE of these two functions must be provided

dataFWS : cells of extra datas
paramName : parameters’ names
paramValue : initial value for the parameters

Description :
This function is called to construct a FWS object.
Only one of the two functions UYWfun Rfun must be given (a handle to a function
is defined by @ + name of the function - see Matlab’s documentation for more
informations on function’s handle).

106

These functions must satisfy the specifications explain in section 6.2.
The names and values of each parameter are given by pair.

Example :
Let us consider a state-space realization (A,B,C,D).
The equivalent realizations are given by the state-space (T−1AT, T−1B,CT,D).
This correspond to the following SIF

Z =

. . .
. Aq Bq
. Cq Dq

 (213)

and the YUW transfom with U = T , Y =W = Il. Then, to create a state-space
structuration, from matrices A, B, C and D, with a parameter T, one should create
a UYWfun like

% UYW function for the classical state-space structuration
function [U,Y,W,cost_flag] = UYW_SS(Rini, paramsValue, dataFWS)
%test if T is singular
if (cond(paramsValue{1})>1e10)
cost_flag=0;
paramsValue{1} = eye(size(paramsValue{1}));
else
cost_flag=1;
end
% compute U,W,Y
Y = eye(0);
W = eye(0);
U = paramsValue{1};

The cost flag could return 0 if the paramsValue proposed is not acceptable
(here a non-invertible matrix).
Then the structuration is created by

Rini = SS2FWR(A,B,C,D);
S = FWS(Rini, @UYW_SS, [], [], ’T’, eye(R.n));

(there is no need for a dataFWS). Even if it is not preferrable, it is also possible
to create this FWS with a Rfun function.
So a function that create a new state-space realization from the paramsValue
is needed

% UYW function for the classical state-space structuration
function [R,cost_flag] = Rfun_SS(Rini, paramsValue, dataFWS)
%test if T is singular
if (cond(paramsValue{1})>1e10)
cost_flag=0;
paramsValue{1} = eye(size(paramsValue{1}));

107

else
cost_flag=1;
end
% compute the new realization
T = paramsValue{1};
R = SS2FWR(inv(T)*Rini.P*T, inv(T)*Rini.Q, Rini.R*T, Rini.S);

and the FWS object is defined by

Rini = SS2FWR(A,B,C,D);
S = FWS(Rini, [], @Rfun_SS, [], ’T’, eye(R.n));

In that case, the optimization process will have to compute for each iteration a
new realization (with the Rfun function) and then compute the associated FWL
measure; whereas in the first case, the FWL measure is directly compute from
the U , Y, W matrices.

See also :
FWR

7.5.3 genCostFunction

Purpose :
G eneric cost function for optimization of a FWS

Syntax :
[cost value, cost flag] = genCostFunction(x, S, freeparams, isaFWSMethod,
l2scaling,Umax,delta, measureFun, ...)

Parameters :
cost value : value of the measure for parameter x
cost flag : 0 if parameter x is incorrect

: 1 otherwise
x : vector of parameter used by optimiser (ASA, fminsearch,

...)
S : FWS object
freeparams : vector that indicates which parameters are free to be opti-

mized
isaFWSMethod : boolean that indicates that if the measure is a FWS’s

method
l2scaling : boolean - tell if R is L2-scaled
Umax : magnitude value for the input - used for the L2-scaling
delta : δ parameter for L2-scaling
measureFun : handle of the measure function
... : the extra parameters are given to the measure function

108

Description :
This function is used internally only, but should be visible for fminsearch, ASA,
...
It just calls genCostFunctionS (or genCostFunctionR) that are real FWS’s
methods (fminsearch or ASA need a cost function with x as first argument, but
we wanted this function to be a FWS’s method).

See also :
optim, genCostFunctionR, genCostFunctionS

7.5.4 get

Purpose :
Get some properties of a FWS object (or list the properties if propName is
ignored)

Syntax :
value = get(S, propName)

Parameters :
value : value of the property
S : FWS object
propName : name of the property (string)

Description :
This function is most of the time called by subsref.
All the fields are actually changeable (may change).

See also :
get

7.5.5 getValues

Purpose :
Return the parameters’ value (cells of values)

Syntax :
v = getValues(S)

Parameters :
v : cells of values
S : FWS object

109

Description :
This function returns the parameters value that are encapsuled in the paramsValue
field.
It is used by UYWfunctions.

See also :
FWS

7.5.6 MsensPole

Purpose :
Compute the open-loop pole sensitivity measure for a FWS object. The com-
putation is based on the UYW-transform

Syntax :
M = MsensPole(S, U,Y,W, moduli)

Parameters :
M : pole sensitivity measure
S : FWS object
U,Y,W : transformation matrices
moduli : 1 (default value) : compute ∂|λ|

∂Z (the sensitivity of the mod-
uli of the eigenvalues)

: 0 : compute ∂λ
∂Z (without the moduli)

Description :
This function computes the open-loop pole sensitivity measure for a FWS object.
It is based on the UYW-transform. If we consider T1 and T2 such that

Z1 = T1Z0T2 (214)

T1 =

Y U−1

Ip

 , T2 =

W U
Im

 (215)

then the sensitivity measure for Z1 can be computed from the sensitivity for Z0

with
∂ |λk|
∂Z

∣∣∣∣
Z1

= T −>1

∂ |λk|
∂Z

∣∣∣∣
Z0

T −>2 (216)

These matrix ∂|λk|
∂Z

∣∣∣
Z0

are stored in the dataMeasure field.

See also :
MsensPole cl, MsensPole

110

References :
[14] T. Hilaire, P. Chevrel, and J.-P. Clauzel. Pole sensitivity stability related
measure of FWL realization with the implicit state-space formalism. In 5th
IFAC Symposium on Robust Control Design (ROCOND’06), July 2006.
[17] T. Hilaire, P. Chevrel, and J. Whidborne. A unifying framework for finite
wordlength realizations. IEEE Trans. on Circuits and Systems, 8(54), August
2007.

7.5.7 MsensPole cl

Purpose :
Compute the closed-loop pole sensitivity measure for a FWS object. The com-
putation is based on the UYW-transform

Syntax :
M = MsensPole cl(S, U,Y,W, Sysp,moduli)

Parameters :
M : pole sensitivity measure
S : FWS object
U,Y,W : transformation matrices
Sysp : plant system (ss object)

moduli : 1 (default value) : compute
∂|λ̄|
∂Z (the sensitivity of the mod-

uli of the eigenvalues)
: 0 : compute ∂λ̄

∂Z (without the moduli)

Description :
This function computes the closed-loop pole sensitivity measure for a FWS
object. It is based on the UYW-transform.
If we consider T1 and T2 such that

Z1 = T1Z0T2 (217)

T1 =

Y U−1

Ip

 , T2 =

W U
Im

 (218)

then the sensitivity measure for Z1 can be computed from the sensitivity for Z0

with
∂
∣∣λ̄k∣∣
∂Z

∣∣∣∣∣
Z1

= T −>1

∂
∣∣λ̄k∣∣
∂Z

∣∣∣∣∣
Z0

T −>2 (219)

These matrix
∂|λ̄k|
∂Z

∣∣∣∣
Z0

are stored in the dataMeasure field.

See also :
MsensPole, MsensPole cl

111

References :
[18] T. Hilaire, P. Chevrel, and J. Whidborne. Finite wordlength controller
realizations using the specialized implicit form. Technical Report RR-6759,
INRIA, 2008.

7.5.8 Mstability

Purpose :
Compute the closed-loop pole sensitivity stability related measure for a FWS
object. The computation is based on the UYW-transform

Syntax :
M = Mstability(S, U,Y,W, Sysp, moduli)

Parameters :
M : pole sensitivity measure
S : FWS object
U,Y,W : transformation matrices
Sysp : plant system (ss object)

moduli : 1 (default value) : compute
∂|λ̄|
∂Z (the sensitivity of the mod-

uli of the eigenvalues)
: 0 : compute ∂λ̄

∂Z (without the moduli)

Description :
This function computes the closed-loop pole sensitivity stability related measure
for a FWS object. It is based on the UYW-transform.
If we consider T1 and T2 such that

Z1 = T1Z0T2 (220)

T1 =

Y U−1

Ip

 , T2 =

W U
Im

 (221)

then the sensitivity measure for Z1 can be computed from the sensitivity for Z0

with
∂
∣∣λ̄k∣∣
∂Z

∣∣∣∣∣
Z1

= T −>1

∂
∣∣λ̄k∣∣
∂Z

∣∣∣∣∣
Z0

T −>2 (222)

These matrix
∂|λ̄k|
∂Z

∣∣∣∣
Z0

are stored in the dataMeasure field.

See also :
Mstability, MsensPole cl

112

References :
[18] T. Hilaire, P. Chevrel, and J. Whidborne. Finite wordlength controller
realizations using the specialized implicit form. Technical Report RR-6759,
INRIA, 2008.

7.5.9 optim

Purpose :
Find the optimal realization, according to the measureFun measure, in the set
of structured equivalent realizations

Syntax :
S = optim(S, options, measureFun, ...)

Parameters :
S : FWS object
options : cells of pairs (string/value) to define the options of the op-

timization
: ’param1’, value1, ’param2’, value2
: - method : ’newton’ (default), ’simplex’ or ’ASA’
: ’newton’ refers to the Quasi-Newton algorithm used by

fminunc and fmincon
: ’simplex’ refers to the simplex algorithm used by fmin-

search
: and ’ASA’ refers to the Annealed Simulated Algorithm
: - ’l2scaling’ : ’no’ (default) ,’yes’ or ’relaxed’
: - ’useFWSmeasure’ : ’yes’ (default) or ’no’
: - ’fixedParameter’ : a parameter to be fixed during op-

timization
: - ’matFileName’ : filename of the mat-file created to store

the result
: (default) : measureFun + funName + date
: [] : no mat-file is created
: if ASA method is used, the name is also used for the log-file
: - the other string/values are given to the fminsearch/ASA

function
measureFun : handle to the measure function
... : the extra parameters are given to the measure function

Description :
This method is the main method of the FWS class. It allows to search over the
set of the structured realizations (defined with the FWS object), by running
some optimization algorithms, like fminsearch or ASA.
Some options could be passed to this function, in order to parametrized the
optimization:

113

• the method option can take the following values

– ’newton’ (default): to use the Quasi-Newton algorithm (fminunc or
fmincon functions)

– ’simplex’: to use the simplex algorithm (fminsearch)

– ’ASA’: to use the Annealed Simulated Algorithm4

• the l2scaling option indicates if a L2-scaling should be applied. It can
take the following values:

– ’no’ (default): no L2-scaling constraints is applied

– ’yes’: the classical L2-scaling constraints are applied (see l2scaling)

– ’relaxed’: the relaxed-L2-scaling constraints are applied (see relaxedl2scaling)

• the useFWSmeasure option (’yes’ (default) or ’no’) force the use of the
UYW-function

• the fixedParameter allows to fix some parameters during the optimiza-
tion. The value associated should be the name of the parameters. Several
parameters coudld be fixed.

• the matFileName set the filename of the .mat file that is created at the
end of the optimization process to store the final optimized result. By
default, this filename is defined by the name of the measure function plus
the name of the structuration (given by the name of the UYWfun or the
Rfun) plus the date. If the filename is empty, no .mat file is storend.
In case of ASA method, this name is also used for the log-file created by
asamin.

• the extra options are given to the optimization algorihtm (fminunc, fmincon,
fminsearch, ASA. See Matlab’soptimset or asamin documentation). Clas-
sical option (for quasi-Newton and convex algorithm) is {’Display’,’Iter’}

Example :

>>S = SS2FWS(A,B,C,D);
>>options = {’method’,’newton’,’Display’,’Iter’, ’l2scaling’,’yes’);
>>Sopt = optim(S, options, @MsensH_cl, Plant);

The Plant value is given to the function MsensH cl as a supplementary param-
eter. The pair of options ’Display’,’Iter’ is passed to the newton algorithm
(fminunc here), so as the iterations are displayed.
So, these commands define a state-space structuration, and search for the opti-
mal L2-scaled realization according to the closed-loop input-output sensitivity

4In that case, ASA and its Matlab gateway asamin should be correctly installed, and added
in the Matlab’s path)

114

(with Plant as a plant to be controlled, see section 3.5.5).
Sopt contains now the structuration S with the optimal realization in R and the
optimal parameter in T.

7.5.10 RNG

Purpose :
Compute the open-loop Roundoff Noise Gain for a FWS. The computation is
based on the UYW-transform

Syntax :
G = RNG(S,U,Y,W)

Parameters :
G : roundoff noise gain
S : FWS object
U,Y,W : transformation matrices

Description :
This function computes the open-loop Roundoff Noise Gain for a FWS. The
computation is based on the UYW-transform.
It is based on the RNG function.
The matrix dZ is computed once and stored in the dataMeasure field.

See also :
RNG

References :
[19] T. Hilaire, D. Ménard, and O. Sentieys. Roundoff noise analysis of finite
wordlength realizations with the implicit state-space framework. In 15th Euro-
pean Signal Processing Conference (EUSIPOC’07), September 2007.

7.5.11 RNG cl

Purpose :
Compute the closed-loop Roundoff Noise Gain for a FWS. The computation is
based on the UYW-transform

Syntax :
G = RNG cl(S,U,Y,W, Plant, tol)

115

Parameters :
G : roundoff noise gain
S : FWS object
U,Y,W : transformation matrices
Plant : ss of the plant
tol : tolerance on trivial parameters (default=1e-8)

Description :
This function computes the closed-loop Roundoff Noise Gain for a FWS. The
computation is based on the UYW-transform.
It is based on the RNG cl function.
The matrix dZ is computed once and stored in the dataMeasure field.

See also :
RNG, RNG cl

References :
[18] T. Hilaire, P. Chevrel, and J. Whidborne. Finite wordlength controller
realizations using the specialized implicit form. Technical Report RR-6759,
INRIA, 2008.

7.5.12 set

Purpose :
Set some properties of a FWS object

Syntax :
S = set(S, propName, value)

Parameters :
S : FWR object
propName : name of the property
value : new value for this property

Description :
This function is most of the time called by subsasgn.
The initial realization Rini can be changed (if the size doesn’t change), and also
the parameters of the structuration. It is not allowed to modified other fields.

See also :
get, subsasgn, set

116

7.5.13 setFPIS

Purpose :
Set the Fixed-Point Implementation Scheme (FPIS) of an FWS object (the
wordlength may be matrices or scalar. The scalar case is used to sed all the
wordlength to the same length)

Syntax :
S = setFPIS(S, betaU, Umax, betaZ, betaT, betaX, betaY, betaADD, betaG,
method);
S = setFPIS(S, FPIS);
S = setFPIS(S, FPISname,Umax);

Parameters :
S : FWS object
FPIS : an other Fixed-Point Implementation Scheme (a structure

with betaU, Umax, betaZ, betaT, betaX, betaY, betaADD,
betaG and method)

FPISname : ’DSP8’ or ’DSP16’
betaU : wordlength of U (inputs)
Umax : maximum value of U (necessary to set gammaU)
betaZ : wordlength of the coefficients
betaT, betaX, betaY : wordlength of the intermediate variables T , the states X

and the outputs
betaADD : wordlength of the accumulators
betaG : nb of guard bits in the accumulators
method : ’RBM’ (default) Roundoff Before Multiplication

: ’RAM’ Roundoff After Multiplication

Description :
This function sets the Fixed-Point Implementation Scheme (FPIS) of an FWS
object. It means that all the associated realization (Rini and R) whill have the
same FPIS (the values can changed).

See also :
setFPIS

References :
[20] T. Hilaire, D. Ménard, and O. Sentieys. Bit accurate roundoff noise analysis
of fixed-point linear controllers. In Proc. IEEE International Symposium on
Computer-Aided Control System Design (CACSD’08), September 2008.

7.5.14 ss

Purpose :
Convert a FWS object into a ss (state-space) object (equivalent state-space)

117

Syntax :
Sys = ss(S,Te)

Parameters :
Sys : ss object
S : FWS object
Te : period (default=1)

Description :
Give the equivalent state-space (ss object). The current realization (R) is con-
sidered.
It is defined with matrices AZ , BZ , CZ and DZ (see eq. (7) and (8)).

See also :
ss

7.5.15 subsasgn

Purpose :
Subscripted assign for FWS object. Here, ’S.prop=value’ is equivalent to
set(S,’prop’,value)

Syntax :
S = subsasgn(S,Sub,value)

Parameters :
S : FWS object
Sub : subassignment layers
value : value of the assignation

Description :
These functions are called internally when operators [], () and . are applied
on a FWR object.
Only the operator . is valid, and links to set and get functions. The command
S.field returns the field field of S (internally, get(S,’field’) is called), and
S.field=vaue set the field field of S

Example :
S.Rini = R
S.R
S.R.Z(3,3) = 0;
S.Rini.WZ = zeros(n);

See also :
set, get, subsref, subsasgn

118

7.5.16 subsref

Purpose :
Subscripted reference for FWS object. Here, ’S.prop’ is equivalent to ’get(S,prop)’

Syntax :
value = subsref(S,Sub)

Parameters :
value : returned value
S : FWS object
Sub : layers of subreferencing

Description :
These functions are called internally when operators [], () and . are applied
on a FWR object.
Only the operator . is valid, and links to set and get functions. The command
S.field returns the field field of S (internally, get(S,’field’) is called), and
S.field=vaue set the field field of S

Example :
S.Rini = R
S.R
S.R.Z(3,3) = 0;
S.Rini.WZ = zeros(n);

See also :
set, get, subsasgn, subsref

7.5.17 tf

Purpose :
Convert a FWS object into a tf object (transfer function)

Syntax :
H = tf(S,Te)

Parameters :
H : tf object
S : FWS object
Te : period (default=1)

119

Description :
Give the transfer function of the realization. The current realization (R) is
considered.
It is defined with matrices AZ , BZ , CZ and DZ (see eq. (7) and (8)) by:

H : z 7→ CZ (zIn −AZ)−1
BZ +DZ (223)

See also :
ss, tf

7.6 FWS private functions

genCostFunctionR Generic cost function for optimization of a FWS.
genCostFunctionS Generic cost function for optimization of a FWS.
myoptions asamin Set of options for the ASA algorithm (through asamin)
updateR Update the R value from the (new) paramsValue

7.6.1 genCostFunctionR

Purpose :
Generic cost function for optimization of a FWS. Here the measure is computed
from the new realization R

Syntax :
[cost value, cost flag] = genCostFunctionR(S, x, freeparams, l2scaling,
Umax, delta, measureFun, ...)

Parameters :
cost value : value of the measure for parameter x
cost flag : 0 if parameter x is incorrect

: 1 otherwise
S : FWS object
x : vector of parameter used by optimiser (ASA, fminsearch,

...)
freeparams : vector that indicates which parameters are free to be opti-

mized
l2scaling : boolean - tell if R is L2-scaled
Umax : magnitude value for the input - used for the L2-scaling
delta : delta parameter for L2-scaling
measureFun : handle of the measure function
... : the extra parameters are given to the measure function

Description :

120

Internal function

This function is a generic cost function. From the vector x, it rebuilds the param-
eters’ value, a new realization (with the updateR method), and then compute
the associated cost value.
In genCostFunctionS, a new realization is not directly computed, only the U ,
Y and W matrices are used to compute the cost value.

See also :
optim, genCostFunction, genCostFunctionS, updateR

7.6.2 genCostFunctionS

Purpose :
Generic cost function for optimization of a FWS. Here the measure is computed
direclty from the U,Y,W (and other values computed one time and stored in
data) in order to decrease the computational time (in genCostFunctionR, it’s
computed from the new realization R)

Syntax :
[cost value, cost flag] = genCostFunctionS(S, x, freeparams, l2scaling,
Umax, delta, measureFun, ...)

Parameters :
cost value : value of the measure for parameter x
cost flag : 0 if parameter x is incorrect

: 1 otherwise
S : FWS object
x : vector of parameter used by optimiser (ASA, fminsearch,

...)
freeparams : vector that indicates which parameters are free to be opti-

mized
l2scaling : boolean - tell if R is L2-scaled
Umax : magnitude value for the input - used for the L2-scaling
delta : delta parameter for L2-scaling
measureFun : handle of the measure function
... : the extra parameters are given to the measure function

Description :

Internal function

This function is a generic cost function. From the vector x, it rebuilds the
matrices U , Y and W (thanks to the UYWfun function) and then compute the
associated cost value.
In genCostFunctionS, a new realization is directly computed from the param-
eters’ value (thanks to the Rfun function), and used to compute the cost value.

121

See also :
optim, genCostFunction, genCostFunctionR

7.6.3 myoptions asamin

Purpose :
Set of options for the ASA algorithm (through asamin)

Syntax :
myoptions asamin

Description :
One can change this script and put its prefered parameters.
It is important to remark that this parameters could, of course, be passed to
asamin through the options of the optim method

See also :
optim

7.6.4 updateR

Purpose :
Update the R value from the (new) paramsValue

Syntax :
[R, cost flag] = updateR(S)

Parameters :
R : FWR object
S : FWS object

Description :

Internal function

This function updates the R value from the (new) parameters’ values (paramsValue).
This is done via the U , Y and W matrices or directly, depending on the FWS
object and the UYWfun and Runf functions.

122

8 Bibliography

References

[1] R.C. Agarwal and C.S. Burrus. New recursive digital filter structures hav-
ing very low sensitivity and roundoff noise. IEEE Trans. Circuits & Syst.,
22(12):921–927, December 1975.

[2] D. Alazard, C. Curres, P. Apkarian, M. Gauvrit, and G. Ferreses. Ro-
bustesse et Commande Optimale. Cepadues Edition, 1999.

[3] J.E Bertram. The effects of quantization in sampled-feedback systems.
Trans. of the American Institute of Electrical Engineers, 77:177–182, 1958.

[4] D.S.K. Chan. Constrained minimization of roundoff noise in fixed-point
digital filters. In Proc. IEEE Int. Conf. On Acoust., Speech, and Signal
Processing (ICASSP ’79), pages 335–339, Washington, DC, April 1979.

[5] D.S.K. Chan. The structure of recursible multidimensional discrete sys-
tems. IEEE Trans. Autom. Control, 25(4):663–673, August 1980.

[6] J. Cooley and J. Tukey. An algorithm for the machine calculation of com-
plex fourier series. Math. of Computation, 19:297–301, 1965.

[7] Sebastian Egner, Jeremy Johnson, David Padua, Jianxin Xiong, and
Markus Püschel. Automatic derivation and implementation of signal pro-
cessing algorithms. ACM SIGSAM Bull. Communications in Computer
Algebra, 35(2):1–19, 2001.

[8] Y. Feng, P. Chevrel, and T. Hilaire. A practival strategy of an efficient and
sparse fwl implementation of lti filters. In submitted to ECC’09, 2009.

[9] M. Gevers and G. Li. Parametrizations in Control, Estimation and Filter-
ing Probems. Springer-Verlag, 1993.

[10] R. Goodall. Perspectives on processing for real-time control. Annual Re-
views in Control, 25:123–131, 2001.

[11] T. Hilaire. Low parametric sensitivity realizations with relaxed l2-dynamic-
range-scaling constraints. submitted to IEEE Trans. on Circuits & Systems
II, 2009.

[12] T. Hilaire and P. Chevrel. On the compact formulation of the derivation
of a transfer matrix with respect to another matrix. Technical Report
RR-6760, INRIA, 2008.

[13] T. Hilaire, P. Chevrel, and J-P. Clauzel. Low parametric sensitivity re-
alization design for FWL implementation of MIMO controllers : Theory
and application to the active control of vehicle longitudinal oscillations. In
Proc. of Control Applications of Optimisation CAO’O6, April 2006.

123

[14] T. Hilaire, P. Chevrel, and J-P. Clauzel. Pole sensitivity stability related
measure of FWL realization with the implicit state-space formalism. In 5th
IFAC Symposium on Robust Control Design (ROCOND’06), July 2006.

[15] T. Hilaire, P. Chevrel, and Y. Trinquet. Implicit state-space representation :
a unifying framework for FWL implementation of LTI systems. In P. Piztek,
editor, Proc. of the 16th IFAC World Congress. Elsevier, July 2005.

[16] T. Hilaire, P. Chevrel, and J. Whidborne. Low parametric closed-loop
sensitivity realizations using fixed-point and floating-point arithmetic. In
Proc. European Control Conference (ECC’07), July 2007.

[17] T. Hilaire, P. Chevrel, and J.F. Whidborne. A unifying framework for
finite wordlength realizations. IEEE Trans. on Circuits and Systems, 8(54),
August 2007.

[18] T. Hilaire, P. Chevrel, and J.F. Whidborne. Finite wordlength controller
realizations using the specialized implicit form. Technical Report RR-6759,
INRIA, 2008.

[19] T. Hilaire, D. Ménard, and O. Sentieys. Roundoff noise analysis of finite
wordlength realizations with the implicit state-space framework. In 15th
European Signal Processing Conference (EUSIPOC’07), September 2007.

[20] T. Hilaire, D. Ménard, and O. Sentieys. Bit accurate roundoff noise analysis
of fixed-point linear controllers. In Proc. IEEE International Symposium
on Computer-Aided Control System Design (CACSD’08), September 2008.

[21] T. Hinamoto, H. Ohnishi, and W.-S. Lu. Minimization of L2 sensitivity for
state-space digital filters subject to L2-dynamic-range scaling constraints.
IEEE Trans. Circuits & Syst. II, 52(10):641–645, 2005.

[22] T. Hinamoto, S. Yokoyama, T. Inoue, W. Zeng, and W. Lu. Analysis
and minimization of L2-sensitivity for linear systems and two-dimensional
state-space filters using general controllability and observability gramians.
In IEEE Transactions on Circuits and Systems, Fundamental Theory and
Applications, volume 49, september 2002.

[23] S.Y. Hwang. Minimum uncorrelated unit noise in state-space digital filter-
ing. IEEE Trans. on Acoust., Speech, and Signal Processing, 25(4):273–281,
August 1977.

[24] M. Ikeda, D. Šiljak, and D. White. An inclusion principle for dynamic
systems. IEEE Trans. Automatic Control, 29(3):244–249, March 1984.

[25] L. Ingber. Adaptive simulated annealing (ASA): Lessons learned. Control
and Cybernetics, 25(1):33–54, 1996.

124

[26] R.S.H. Istepanian and J.F. Whidborne. Finite-precision computing for digi-
tal control systems: Current status and future paradigms. In R.S.H. Istepa-
nian and J.F. Whidborne, editors, Digital Controller Implementation and
Fragility: A Modern Perspective, chapter 1, pages 1–12. Springer-Verlag,
London, UK, 2001.

[27] M. Iwatsuki, M. Kawamata, and T. Higuchi. Statistical sensitivity and
minimum sensitivity structures with fewer coefficients in discrete time linear
systems. IEEE Trans. Circuits & Syst., 37(1):72–80, January 1989.

[28] J.F. Kaiser. Digital filters. In F.F. Kuo and J.F. Kaiser, editors, System
Analysis by Digital Computer, pages 218–285. Wiley, New York, 1966.

[29] J. Knowles and E. Olcayto. Coefficient accuracy and digital filter response.
IEEE Trans. Circuits & Syst., 15(1):31–41, mar 1968.

[30] H-J. Ko and WS Yu. Guaranteed robust stability of the closed-loop systems
for digital controller implementations via orthogonal hermitian transform.
IEEE Trans. on Systems, Man, and Cybernetics, 34(4):1923–1932, August
2004.

[31] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee. DSP Processor Fundamen-
tals: Architectures and Features. Berkeley Design Technology, Inc, Fremont,
CA, 1996.

[32] G. Li. On the structure of digital controllers with finite word length con-
sideration. IEEE Trans. on Autom. Control, 43(5):689–693, May 1998.

[33] G. Li, B.D.O. Anderson, M. Gevers, and J.E. Perkins. Optimal FWL design
of state space digital systems with weighted sensitivity minimization and
sparseness consideration. IEEE Trans. Circuits & Syst. II, 39(5):365–377,
May 1992.

[34] G. Li and Z. Zhao. On the generalized DFIIt structure and its state-space
realization in digital filter implementation. IEEE Trans. on Circuits and
Systems, 51(4):769–778, April 2004.

[35] B. Liu. Effects of finite word-length on the accuracy of digital filters — a
review. IEEE Trans. Circuit Theory, 18(6):670–677, 1971.

[36] W.-S. Lu and T. Hinamoto. Jointly optimized error-feedback and realiza-
tion for roundoff noise minimization in state-space digital filters. IEEE
Trans. Sig. Proc., 53(6):2135–2145, June 2005.

[37] W.J. Lutz and S.L. Hakimi. Design of multi-input multi-output systems
with minimum sensitivity. IEEE Trans. Circuits & Syst., 35(9):1114–1122,
September 1988.

[38] A.G. Madievski, B.D.O. Anderson, and M. Gevers. Optimum realizations
of sampled-data controllers for FWL sensitivity minimization. Automatica,
31(3):367–379, 1995.

125

[39] P.E. Mantey. Eigenvalue sensitivity and state-variable selection. IEEE
Trans. Autom. Control, 13(3):263–269, 1968.

[40] R. Middleton and G. Goodwin. Digital Control and Estimation, a unified
approach. Prentice-Hall International Editions, 1990.

[41] P. Moroney, A.S. Willsky, and P.K. Houpt. The digital implementation
of control compensators: the coefficient wordlength issue. IEEE Trans.
Autom. Control, 25(4):621–630, August 1980.

[42] C. Mullis and R. Roberts. Synthesis of minimum roundoff noise fixed point
digital filters. In IEEE Transactions on Circuits and Systems, volume CAS-
23, September 1976.

[43] I.W. Sandberg. Floating-point-roundoff accumulation in digital-filter real-
izations. Bell Syst. Tech. J., 46(8):1775–1791, 1967.

[44] R. Skelton and D. Wagie. Minimal root sensitivity in linear systems. Jour-
nal of Guidance, Control and Dynamics, 7(5):570–574, 1984.

[45] J.B. Slaughter. Quantization errors in digital control systems. IEEE Trans.
Autom. Control, 9:70–74, 1964.

[46] V. Tavşanoğlu and L. Thiele. Optimal design of state-space digital filters by
simultaneous minimization of sensibility and roundoff noise. In IEEE Trans.
on Acoustics, Speech and Signal Processing, volume CAS-31, October 1984.

[47] L. Thiele. Design of sensitivity and round-off noise optimal state-space
discrete systems. Int. J. Circuit Theory Appl., 12:39–46, 1984.

[48] L. Thiele. On the sensitivity of linear state space systems. IEEE Trans.
Circuits & Syst., 33(5):502–510, 1986.

[49] D. Šiljak. Decentralized Control of Complex Systems. Academic Press,
1991.

[50] J.F. Whidborne, R. Istepanian, and J. Wu. Reduction of controller fragility
by pole sensitivity minimization. IEEE Trans. Automatic Control, 46:320–
325, 2001.

[51] D. Williamson. Roundoff noise minimization and pole-zero sensibivity in
fixed-point digital filters using residue feedback. In IEEE Trans. on Acous-
tics, Speech and Signal Processing, volume ASSP-43, October 1986.

[52] D. Williamson. Digital Control and Implementation, Finite Wordlength
Considerations. Prentice-Hall International Editions, 1992.

[53] J. Wu, S. Chen, G. Li, R. Istepanian, and J. Chu. An improved closed-loop
stability related measure for finite-precision digital controller realizations.
IEEE Trans. Automatic Control, 46(7):1162–1166, 2001.

126

[54] C. Xiao. Improved L2-sensitivity for state-space digital system. IEEE
Trans. Sig. Proc., 45(4):837–840, April 1997.

[55] W.-Y. Yan and J.B. Moore. On L2-sensitivity minimization of linear state-
space systems. IEEE Trans. Circuits & Syst. I-Fundamental Theory &
Appl., 39(8):641–648, August 1992.

[56] K. Zhou, J. Doyle, and K. Glover. Robust and Optimal Control. Prentice-
Hall, 1996.

127

Input: u: array [1..4] of reals
Output: y: array [1..8] of reals
Data: T : array [1..16] of reals
begin

// Intermediate variables

T1 ← u(1) + u(3);
T2 ← 0;
T3 ← u(1) +−u(3);
T4 ← 0;
T5 ← u(2) + u(4);
T6 ← 0;
T7 ← u(2) +−u(4);
T8 ← 0;
T9 ← T1;
T10 ← T2;
T11 ← T3;
T12 ← T4;
T13 ← T5;
T14 ← T6;
T15 ← T8;
T16 ← −T7;
// Outputs

y(1)← T9 + T13;
y(2)← T10 + T14;
y(3)← T11 + T15;
y(4)← T12 + T16;
y(5)← T9 +−T13;
y(6)← T10 +−T14;
y(7)← T11 +−T15;
y(8)← T12 +−T16;

end
Algorithm 9: FFT4 without any simplification

128

Input: u: array [1..4] of reals
Output: y: array [1..8] of reals
Data: T : array [1..8] of reals
begin

// Intermediate variables

T1 ← u(1) + u(3);
T2 ← u(1) +−u(3);
T3 ← u(2) + u(4);
T4 ← u(2) +−u(4);
T5 ← T1;
T6 ← T2;
T7 ← T3;
T8 ← −T4;
// Outputs

y(1)← T5 + T7;
y(2)← 0;
y(3)← T6;
y(4)← T8;
y(5)← T5 +−T7;
y(6)← 0;
y(7)← T6;
y(8)← −T8;

end
Algorithm 10: FFT4 with null terms removed

Input: u: array [1..4] of reals
Output: y: array [1..8] of reals
Data: T : array [1..5] of reals
begin

// Intermediate variables

T1 ← u(1) + u(3);
T2 ← u(1) +−u(3);
T3 ← u(2) + u(4);
T4 ← u(2) +−u(4);
// Outputs

y(1)← T1 + T3;
y(2)← 0;
y(3)← T2;
y(4)← −T4;
y(5)← T1 +−T3;
y(6)← 0;
y(7)← T2;
y(8)← T4;

end
Algorithm 11: FFT4 with substitutions (1 term)

129

	Installation
	Introduction to FWL problem
	A unifying framework
	The Specialized Implicit Framework (SIF)
	definitions
	Examples
	Classical state-space
	State-space with operator
	Cascade decomposition
	Others forms

	Equivalent classes
	Finite Wordlength measures
	Coefficient's quantization
	Input-Output sensitivity
	Pole sensitivity
	Output roundoff noise
	Closed-loop measures

	The optimal realization problem
	Tutorial
	First example

	The classes
	The FWR class
	Fixed-Point Implementation Scheme
	Methods

	The FWS class
	UYWfun function
	Rfun function
	Methods

	FWR Toolbox reference
	create realizations and structurations
	DFIq2FWR
	FFT2FWR
	implicitSS2FWS
	Modaldelta2FWR
	Modalrho2FWR
	Modalrho2FWS
	Observer2FWR
	OpModalrho2FWR
	rhoDFIIt2FWR
	rhoDFIIt2FWS
	SS2FWR
	SS2FWS
	SSdelta2FWR
	SSdelta2FWS
	SSrho2FWR
	SSrho2FWS

	Private functions
	complexFFT
	strideM
	twiddleM

	FWR class methods
	algorithmCfloat
	algorithmLaTeX
	computationalCost
	computeW
	display
	double
	FWR
	FWRmat2LaTeX
	get
	implementLaTeX
	implementMATLAB
	implementVHDL
	l2scaling
	MsensH
	MsensH_cl
	MsensPole
	MsensPole_cl
	Mstability
	mtimes
	ONP
	plus
	quantized
	realize
	relaxedl2scaling
	RNG
	RNG_cl
	set
	setFPIS
	simplify
	size
	ss
	subsasgn
	subsref
	tf
	TradeOffMeasure_cl
	transform

	FWR private functions
	compute_rZ
	computeAZBZCZDZWcWo
	computeJtoS
	computelmnp
	computeZ
	deigdZ
	mylyap
	scalprodCfloat
	scalprodMATLAB
	scalprodVHDL
	w_prod_norm
	w_prod_norm_SISO

	FWS class methods
	display
	FWS
	genCostFunction
	get
	getValues
	MsensPole
	MsensPole_cl
	Mstability
	optim
	RNG
	RNG_cl
	set
	setFPIS
	ss
	subsasgn
	subsref
	tf

	FWS private functions
	genCostFunctionR
	genCostFunctionS
	myoptions_asamin
	updateR

	Bibliography

