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A specialised implicit state-space representation is introduced to deal with finite wordlength effects in controller
implementations. This specialised implicit form provides a macroscopic description of the algorithm to be
implemented. So, it constitutes a unifying framework, allowing to encompass various implementation forms,
such as the !-operator, the "Direct Form II transposed, observer-based and many other realisations usually
considered separately in the literature. Different measures quantifying the finite wordlength effects on the overall
closed-loop behaviour are defined in this new context. They concern both stability and performance. The gap
with the infinite precision case is evaluated classically through the coefficient sensitivity and roundoff noise
analysis. The problem of determining a realisation with minimum finite wordlength effects can subsequently be
solved using appropriate numerical methods. The approach is illustrated with an example.
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1. Introduction

When implemented in digital computing devices,
controllers are subjected to numerical degradations
due to the rounding and quantisation that occurs on
the variables and constants used to define the
controller. There are two main effects of this finite-
precision (often known as the Finite Word Length
(FWL) effects):

. Roundoff noise is the addition of noise into the
system resulting from the rounding of variables
before and after each arithmetic operation;

. Parameter errors are the quantisation of the
controller coefficients/parameters. They
degrade the performance and/or stability of
the controller.

For most low-order controllers, the FWL effects are
minor, but for higher order controllers, particularly
when fast sampling is used, the FWL effects can
become significant. For example, the stability of the
system can be compromised even by a small quantisa-
tion of the coefficients (Whidborne, Wu, and
Istepanian 2000).

However, it is well known that the FWL effects
are dependent upon the controller realisation. Hence
many papers deal with the problem of finding a
realisation that minimises the FWL effects in some
sense (see, for example, Gevers and Li (1993),

Istepanian and Whidborne (2001), Whidborne, Wu,
and Istepanian (2001) and references therein). It is also
well known that the FWL effects are dependent on the
operator used. The !-operator, for example, generally
has much better numerical properties than the usual
delay operator, q!1, for control systems with fast
sampling (Goodall 2001).

The problem of addressing the optimal realisation
for minimal FWL effects is usually addressed in the
state space (e.g. Thiele 1984; Gevers and Li 1993;
Whidborne et al. 2001). Briefly, if the controller is

Kð#Þ ¼ Cð#I! AÞ!1BþD, ð1Þ

where # is the transform of the chosen operator (e.g. !
or q-operator), the problem is to search over the set

CTð#I!T!1ATÞ!1TBþD : T a non-singular matrix
! "

to find a matrix T and corresponding controller
realisation with small FWL effects. The limitations
of this approach are that

. there are many realisations that cannot be
expressed in such a standard state space form;

. the search is restricted to a single operator.

The !-operator is more complex to implement than the
q-operator, so in some circumstances, it may be better
to have a mix of operators. These limitations may be
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overcome by using the specialised implicit form (SIF)
(Hilaire, Chevrel, and Trinquet 2005b) for the con-
troller. The SIF allows a formal and faithful macro-
scopic description of the numerical algorithm used to
implement the controller.

In order to determine the optimal realisation, some
measures of the roundoff noise and the closed-loop
coefficient sensitivity are required. A fair number of
these have been proposed over the years. The roundoff
noise is generally measured by the output noise
variance (e.g. Mullis and Roberts 1976; Hwang 1977;
Gevers and Li 1993). Measures of the input–output
performance (IO-performance) deterioration have
been proposed by Gevers and Li (1993). Stability can
be assessed using a probabilistic measure (Fialho and
Georgiou 1994), a measure based on a small-gain
theorem (Whidborne et al. 2000), $-analysis (Wu, Li,
Chen, and Chu 2008) or closed-loop pole sensitivity
measures (Li 1998; Whidborne et al. 2001; Wu, Chen,
Li, Istepanian, and Chu 2001; Ko and Yu 2003).
Ideally, the chosen measures should be comput-
ationally tractable but reasonably representative of
the actual perturbations that occur in implementation.

The SIF was originally proposed in Hilaire et al.
(2005b). In Hilaire, Chevrel, and Whidbarne (2007b)
the FWL filter problem (the open-loop case) is consid-
ered. In this article, some of the results of Hilaire et al.
(2007b) and Hilaire, Ménard, and Sentieys (2007c) are
extended to the FWL controller problem, that is the
closed-loop case. A closed-loop IO sensitivity measure
which extends that of Gevers and Li (1993) and a pole
sensitivity stability related measure (PSSM) are pro-
posed along with a closed-loop roundoff noise gain
(RNG) measure. All are suitable for use with the SIF
and are similar to those proposed for the FWL filter
realisation problem (Hilaire et al. 2007b). Note that
some preliminary results on FWL controller with the
SIF appeared in Hilaire, Chevrel, and Trinquet (2005a).

This article is organised as follows. In the next
section, the SIF is recalled, and a number of definitions
are given. The recently proposed "DFIIt realisation
(Li and Zhao 2004) is shown to be a particular case of
the SIF. In Section 2.2, the concept of equivalent
classes (potentially structured) of realisations is intro-
duced and illustrated with an example. Section 3
details, in a closed-loop context, the two sensitivity
measures and the roundoff noise measure. In Section 4,
an optimal design problem is introduced and it is
illustrated with an example in Section 5.

2. The SIF

Many controller/filter forms, such as lattice filters
and !-operator controllers, make use of intermediate

variables and hence cannot be expressed in the
traditional state-space form. The SIF has been
proposed in order to model a much wider class of
discrete-time linear time-invariant controller imple-
mentations than the classical state-space form.

The model takes the form of an implicit state-space
realisation (Aplevich 1991) specialised according to

J 0 0

!K In 0

!L 0 Ip

0

B@

1

CA
Tðkþ 1Þ
Xðkþ 1Þ
YðkÞ

0

B@

1

CA¼
0 M N

0 P Q

0 R S

0

B@

1

CA
TðkÞ
XðkÞ
UðkÞ

0

B@

1

CA,

ð2Þ

where J2Rl&l, K2Rn&l, L2Rp&l, M2Rl&n, N2Rl&m,
P2Rn&n, Q2Rn&m, R2Rp&n, S2Rp&m, T(k)2Rl,
X(k)2Rn, U(k)2Rm and Y(k)2Rp, and the matrix J
is lower triangular with 1’s on the main diagonal. Note
X(kþ 1) is the state-vector and is stored from one step
to the next, whilst the vector T plays a particular role
as T(kþ 1) is independent of T(k) (it is here defined
as the vector of intermediary variables). The particular
structure of J allows the expression of how the
computations are decomposed with intermediate
results that could be reused.

It is implicitly assumed throughout this article
that the computations associated with the realisation
(2) are executed in row order, giving the following
algorithm:

[i] J:Tðkþ 1Þ  M:XðkÞ þN:UðkÞ
[ii] Xðkþ 1Þ  K:Tðkþ 1Þ þ P:XðkÞ þQ:UðkÞ
[iii] YðkÞ  L:Tðkþ 1Þ þ R:XðkÞ þ S:UðkÞ:

ð3Þ

Note that in practice, steps [ii] and [iii] could be
exchanged to reduce the computational delay. Also
note that because the computations are executed in
row order and J is lower triangular with 1’s on the
main diagonal, there is no need to compute J!1.

Equation (2) is equivalent in infinite precision to
the classical state-space form

Tðkþ 1Þ
Xðkþ 1Þ
YðkÞ

0

@

1

A ¼
0 J!1M J!1N

0 AZ BZ

0 CZ DZ

0

@

1

A
TðkÞ
XðkÞ
UðkÞ

0

@

1

A ð4Þ

with AZ2Rn&n, BZ2Rn&m, CZ2Rp&n and DZ2Rp&m

where

AZ ¼ KJ!1Mþ P, BZ ¼ KJ!1NþQ, ð5Þ

CZ ¼ LJ!1Mþ R, DZ ¼ LJ!1Nþ S: ð6Þ

Note that (4) corresponds to a different parametrisa-
tion than (2) (the finite-precision implementation of
(4) will cause different numerical deterioration to

2 T. Hilaire et al.
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that of (2)). The associated system transfer function is
given by

H : z!CZðzIn ! AZÞ!1BZ þDZ: ð7Þ

A complete framework for the description of all
digital controller implementations can be developed by
using the following definitions. For further details, see
Hilaire et al. (2007b).

Definition 2.1: A realisation R of a transfer matrix H
is entirely defined by the data Z, l, m, n and p.
Z2R(lþnþp)&(lþnþm) is partitioned according to

Z¼4
!J M N

K P Q

L R S

0

B@

1

CA ð8Þ

and l, m, n and p are the matrix dimensions given
previously. The notation used will beR :¼ (Z, l,m, n, p).

The notation Z is introduced to make the further
developments more compact ((41), (57), etc.).

Definition 2.2: RH denotes the set of realisations
described by (2) equivalent to the transfer function H,
that is to say with the same IO relationship. These
realisations are said to be IO-equivalent and IO-
equivalent to the transfer function H.

In order to encompass realisations with some
special structure (q or ! state-space, direct forms,
cascades, lattice, etc.), a subset of realisations sharing
the same structure is defined.

Definition 2.3: A structuration S is a set of structured
realisations. That is realisations that share a common
structure with some coefficients and/or some dimen-
sions having been fixed a priori.

Some examples of structurations are given in the
next subsection.

Definition 2.4: RS
H is the set of equivalent structured

realisations. Realisations from RS
H are structured

according to S and are IO-equivalent to H:

RS
H¼
4
RH \ S: ð9Þ

2.1 Some examples

2.1.1 !-realisations

Consider the !-state-space form

!½XðkÞ( ¼ A!XðkÞ þ B!UðkÞ
YðkÞ ¼ C!XðkÞ þD!UðkÞ

#
ð10Þ

with ! ¼ q!1
D , D2Rþ* and q is the shift operator

(Gevers and Li 1993).

This realisation should be implemented with the
following algorithm:

[i] T A!:XðkÞ þ B!:UðkÞ
[ii] Xðkþ 1Þ  XðkÞ þ D:T
[iii] YðkÞ  C!:XðkÞ þD!:UðkÞ,

ð11Þ

where T is an intermediate variable. This could be
modelled with the SIF as

In 0 0

!DIn In 0

0 0 Ip

0

B@

1

CA
Tðkþ 1Þ
Xðkþ 1Þ
YðkÞ

0

B@

1

CA¼
0 A! B!

0 In 0

0 C! D!

0

B@

1

CA
TðkÞ
XðkÞ
UðkÞ

0

B@

1

CA

ð12Þ

2.1.2 Cascade decomposition

The cascade form is a common realisation for filter/
controller implementations. It generally has good
FWL properties compared to the direct forms and
requires less operations than fully parametrised state-
space realisations. The system is decomposed into a
number of lower order (usually first and second order)
subsystems connected in series.

Let us consider two realisations R1 and R2

connected in series as shown in Figure 1.
Assuming R1 and R2 to be defined by SIF matrices

(J1, K1, L1, M1, N1, P1, Q1, R1, S1) and (J2, K2, L2, M2,
N2, P2, Q2, R2, S2), and cascading them leads to the
realisation R :¼ (Z,m1, p1þ l1þ l2, n1þ n2, p2) with

Z ¼

!J1 0 0 M1 0 N1

L1 !I 0 R1 0 S1

0 N2 !J2 0 M2 0
..................................................
K1 0 0 P1 0 Q1

0 Q2 K2 0 P2 0
..................................................
0 S2 L2 0 R2 0

0

BBBBBBBB@

1

CCCCCCCCA

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

ð13Þ

from which definition of the corresponding structura-
tion S immediately follows. The outputs of R1 are
computed in the intermediate variable and then used
as the inputs of R2.

The main point is that this construction can
represent cascade systems without changing the
parametrisation.

Remark 1: The cascade structuration can be applied
to realisations that are structured differently (q and
!-state-space realisations, for example) and easily
extended to multiple cascaded systems.

U1 Y2R1
R2

Y 1 = U2

Figure 1. Cascade form.
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2.1.3 " transposed direct-form II

Li and Hao (Li 2004; Li and Zhao 2004; Hao and Li
2005) have presented a new sparse structure called
"DFIIt. This is a generalisation of the transposed
direct-form II structure with the conventional shift and
the !-operator and is similar to that of Palaniswami
and Feng (1991). It is a sparse realisation (with 3nþ 1
parameters when n is the order of the controller),
leading to an economic (few computations) implemen-
tation that could be very numerically efficient. As we
will see later, this realisation has n extra degrees of
freedom that can be used to find an optimal realisation
within its particular structuration.

Let us define

"i : z!
z! %i
Di

, 14i4n ð14Þ

and

%i : z!
Yi

j¼1
"j ðzÞ, 14i4n, ð15Þ

where (% i)14i4n and (Di4 0)14i4n are two sets of
constants. Let (ai)14i4n and (bi)04i4n be the coefficient
sets of the transfer function, using the shift operator

H : z!
b0 þ b1z!1 þ ) ) ) þ bn!1z!nþ1 þ bnz!n

1þ a1z!1 þ ) ) ) þ an!1z!nþ1 þ anz!n
: ð16Þ

Therefore, H can be reparametrised with (&i)14i4n and
('i)04i4n as follows:

HðzÞ ¼ '0 þ '1%!11 ðzÞ þ ) ) ) þ 'n!1%!1n!1ðzÞ þ 'n%!1n ðzÞ
1þ &1%!11 ðzÞ þ ) ) ) þ &n!1%!1n!1ðzÞ þ &n%!1n ðzÞ

:

ð17Þ

Denoting

Va¼
4

1

a1

..

.

an

0

BBBB@

1

CCCCA
, Vb¼

4

b0

b1

..

.

bn

0

BBBB@

1

CCCCA
, V&¼

4

1

&1

..

.

&n

0

BBBB@

1

CCCCA
, V'¼

4

'0

'1

..

.

'n

0

BBBB@

1

CCCCA

ð18Þ

the parameters (ai)14i4n, (bi)04i4n, (&i)14i4n and
('i)04i4n are related (Hao and Li 2005) according to

Va ¼ (!V&

Vb ¼ (!V',

#
ð19Þ

where (¼4
Qn

i¼1 Di and !2Rnþ1&nþ1 is a lower trian-
gular matrix whose i-th column is determined by the
coefficients of the z-polynomial

Qn
j¼i "jðzÞ for 14 i4 n

and with !nþ1,nþ1¼ 1.
Equation (17) can be, for example, implemented

with a transposed direct form II (Figure 2), and each
operator "!1i can be implemented as shown in Figure 3
(each %!1k is obtained by cascading the "!1i

$ %
14i4k

).
Clearly, when % i¼ 0, Di¼ 1 (14 i4 n), Figure 2 is
the conventional transposed direct form II. When
% i¼ 1, Di¼D (14 i4 n), one gets the ! transposed
direct form II. This form was first proposed as an
unification for the shift-direct form II transposed and
the !-direct form II transposed. It is now used to
exploit the n extra degrees of freedom given by the
choice of the parameters (% i)14i4n.

The corresponding algorithm is:

[i] YðkÞ  '0UðkÞ þW1ðkÞ
[ii] WiðkÞ  "!1i 'iUðkÞ ! &iYðkÞ þWiþ1ðkÞ

& '

[iii] WnðkÞ  "!1n 'nUðkÞ ! &nYðkÞ
& '

:

ð20Þ

U(k)

Y (k)

βn βi
βn−1 β1

β0

ρn
−1 ρi+1

−1 ρi
−1 −1ρ1

αn αn−1
αi α1

Figure 2. Generalised " direct form II.
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By introducing the intermediate variables needed to
realise the "!1i operator (according to "!1i ¼ 1

q!1!%i Di,
with the multiplication by Di done last, see Figure 3),
Equations (21)–(23) become

T ¼

D1

D2

. .
.

Dn

0

BBBB@

1

CCCCA
XðkÞ þ

'0

0

..

.

0

0

BBBB@

1

CCCCA
UðkÞ ð21Þ

Xðkþ 1Þ ¼

!&1 1

!&2 0 . .
.

..

. . .
.

1

!&n 0

0

BBBBB@

1

CCCCCA
Tþ
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.

%n

0

BBBB@

1

CCCCA
XðnÞ

þ

'1

'2

..

.

'n

0

BBBB@

1

CCCCA
UðkÞ ð22Þ

YðkÞ ¼ 1 0 ) ) ) 0
$ %

T ð23Þ

Within the SIF framework, the "DFIIt form is
described by

Z ¼

!1 D1 '0

. .
.

D2 0

. .
. . .

. ..
.

!1 Dn 0
....................................................................
&1 1 %1 '1

!&2 0 . .
.

%2 '2
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. . .
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1 . .
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0
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ð24Þ

Remark 2: Thanks to the SIF, there is no need to use
another operator unlike the shift operator.

A number of other examples of structurations are
given in Hilaire (2006). They illustrate the generality of
the SIF framework.

2.2 Equivalent classes

In order to exploit the potential offered by the SIF in
improving implementations, it is necessary to charac-
terise further the sets of equivalent system realisations.
We first note that the non-minimal realisations may
provide better implementations (the !-form can be seen
as a non-minimal realisation when written in the
implicit state-space form – with the shift operator).
Hence the notion of equivalence needs to be extended
by considering that the system state dimension does
not have to be invariant. The inclusion principle,
introduced by Šiljak and Ikeda (Ikeda, Šiljak, and
White 1984; Šiljak 1991) in the context of decentralised
control, is useful here as it allows the formalisation
of the equivalence and inclusion relations between two
system realisations.

These two notions have been extended to the SIF
in Hilaire et al. (2007b) in order to give a formal
description of equivalent classes. Although it may be of
practical interest to only consider realisations of
the same dimensions, where transformations from
one realisation to another is only a similarity
transformation.

This could be achieved with the following
proposition.

Proposition 2.5: Consider a realisation R :¼ (Z, l,m,
n, p). All the realisations ~R :¼ ð ~Z, l,m, n, pÞ with

~Z ¼
Y
U!1

Ip

0

B@

1

CAZ
W
U

Im

0

B@

1

CA ð25Þ

and U, W, Y are non-singular matrices, are equivalent
to R, and share the same complexity (i.e. generically the
same amount of computation).

It is also possible to just consider a subset of
similarity transformations that preserve a particular
structure, say cascade or delta. For example, if an
initial !-structured realisation R :¼ (Z0, n,m, n, p) is
given, the subset of equivalent !-structured realisation
is defined by

RS!
H ¼

R :¼ ðZ, n,m, n, pÞn

Z ¼
U!1

U!1

Ip

0

B@

1

CAZ0

U
U

Im

0

B@

1

CA

8U 2 Rn&n non-singular

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

:

ð26Þ

∆i

γi

z−1

ρi
−1

Figure 3. Realisation of operator "!1i :
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This compact algebraic characterisation of equiva-
lent classes is particularly efficient when used to search
for an optimal structured realisation (Section 4).

3. Closed-loop measures

The quantisation of the coefficients and the roundoff
noise may have a negative impact on the closed-loop
system behaviour. Three measures that may be used to
evaluate this impact are described in this section.

3.1 Problem statement

Consider the plant P together with controller C
according to the standard form shown in Figure 4,
where W(k)2Rp1 is the exogenous input, Y(k)2Rp2 the
control input, Z(k)2Rm1 the controlled output and
U(k)2Rm2 the measured output.

The controller is defined as C :¼ (Z, l,m2, n, p2) and
the plant P as

P :¼
A B1 B2

C1 D11 D12

C2 D21 0

0

@

1

A, ð27Þ

where A2RnP&nP, B12RnP&p1, B22RnP&p2, C12
Rm1&nP, C22Rm2&nP, D112Rm1&p1, D122Rm1&p2,
D212Rm2&p1 and D222Rm2&p2 is assumed to be zero
only to simplify the mathematical expressions.

Note that open-loop results (filter modelling) may
be obtained as a particular case, with:

P :¼ 0 I

I 0

0

@

1

A: ð28Þ

The closed-loop system "S is then given by

"S ¼ Fl ðP, CÞ :¼
"A "B
"C "D

 !

, ð29Þ

where Fl(), )) is the well-known lower linear fractional
transform (Zhou, Doyle, and Gloyer 1996) and

where "A2RnPþn&nPþn, "B 2 RnPþn&p1 , "C 2 Rm1&nPþn

and "D 2 Rm1&p1 are such that

"A ¼
Aþ B2DZC2 B2CZ

BZC2 AZ

( )
,

"B ¼
B1 þ B2DZD21

BZD21

( )
, ð30Þ

"C¼ C1þD12DZC2 D12CZ

$ %
, "D¼D11þD12DZD21:

ð31Þ

The closed-loop transfer function is

"H : z! "C zI! "A
$ %!1 "Bþ "D: ð32Þ

3.2 Input–output sensitivity

In order to evaluate how much the quantisation of the
controller’s coefficients (due to FWL implementation)
affects the closed-loop transfer function, the sensitivity
@ "H
@Z can be used. Before that, the nature of the
perturbation on each coefficient must made precise.

A coefficient’s quantisation depends both on its
value and its representation. First, if the value of a
coefficient is such that it will be quantised without
error (like 0, *1 or a power of 2), then, that parameter
makes no contribution to the overall coefficient sen-
sitivity and is called a trivial parameter. Hence we
introduce the weighting matrices WZ associated with
Z such that

WZð Þi,j¼
4 0 if Xi,j is exactly implemented,

1 otherwise.

#
ð33Þ

For a fixed-point representation, Z is perturbed to
Zy¼ZþWZ&D, where D represents the quantisation
error.

Remark 1: For floating-point representations, Z is
perturbed to Zy¼ZþWZ&Z&D (Wu, Chen,
Whidborne, and Chu 2003; Hilaire, Chevrel, and
Whidborne 2007a). The following measures can then
be easily extended to the floating-point (and block-
floating-point) case.

The closed-loop transfer function resulting from
the quantisation process is denoted by "Hy ¼4 "H

**
ZþWZ&D.

For the single input single output (SISO) case, the
following is true 8z2C

"HyðzÞ ! "HðzÞ ¼
X

i,j

Di,j
@ "HyðzÞ
@D

****
D¼0
þ o Dk k2max

$ %
ð34Þ

and

"Hy ! "H
++ ++

2
+ Dk kmax

@ "Hy

@D

****
D¼0

++++

++++
2

þ o Dk k2max

$ %** **, ð35Þ

P
m1

m2

C

p1

p2

W (k) Z (k)

U (k)Y (k)

S̄

Figure 4. Closed-loop control system.
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where k)k2 denotes the H2-norm. The wordlength can
be chosen so that kDkmax is sufficiently small, but if the
k@ "Hy

@D jD¼0k2 term is made small by an appropriate choice
of realisation, then it is clear that a lower wordlength
can be used. The actual performance degradation can
be checked a posteriori.

It is easy to show that

@ "Hy

@D

****
D¼0
¼ @

"H

@Z
&WZ: ð36Þ

From (35) and (36), we define an IO-sensitivity
measure as follows:

Definition 3.1: Consider a realisation C :¼ (Z, l,m2,
n, p2). For the SISO case, the closed-loop transfer
function sensitivity, with respect to all the non-trivial
coefficients of C, is defined by

"MW
L2
¼4 @ "H

@Z
&WZ

++++

++++
2

2

: ð37Þ

Remark 2: It is possible to include a frequency
weighting to emphasise certain frequency range
(Gevers and Li 1993) to ensure that the closed-loop
degradation is constrained over a given frequency
range.

This measure can be extended to the multiple input
multiple output (MIMO) case. It is also useful to
consider the contribution of each coefficient to the
overall sensitivity. The closed-loop transfer function
sensitivity matrix, denoted by ! "H

!Z, is the matrix of the
H2-norm of the IO-sensitivity of the transfer function
"H with respect to each coefficient Zi,j. It is defined by

! "H

!Z

( )

i,j

¼4 @ "H

@Zi,j

++++

++++
2

: ð38Þ

It can be used to obtain a map of the sensitivity with
respect to each coefficient and help to choose a specific
fixed-point format for each coefficient. From the
properties of H2-norms, we get

"!H

!Z

++++

++++
F

¼ @ "H

@Z

++++

++++
2

, ð39Þ

where k)kF is the Frobenius norm. Definition 3.1 can
now be stated for the general case.

Definition 3.2: The closed-loop IO-sensitivity mea-
sure is defined by

"MW
L2
¼4

"!H

!Z
&WZ

++++

++++
2

F

: ð40Þ

The IO-sensitivity @ "H
@Z can be evaluated by the

following proposition.

Proposition 3.3:

@ "H

@Z
¼ "H1 ~ "H2, ð41Þ

where ~ is the operator defined by

A~B¼4 VecðAÞ ) Vec B>
$ %& '>

, ð42Þ

Vec()) is the classical operator that vectorises a matrix,
colorand "H1 and "H2 are defined by

"H1 : z! "C zI! "A
$ %!1 "M1 þ "M2 ð43Þ

"H2 : z! "N1 zI! "A
$ %!1 "Bþ "N2 ð44Þ

and

"M1 ¼
B2LJ!1 0 B2

KJ!1 In 0

( )
, "N1 ¼

J!1NC2 J!1M

0 In

C2 0

0

B@

1

CA,

ð45Þ

"M2 ¼ D12LJ!1 0 D12

$ %
, "N2 ¼

J!1ND21

0

D21

0

B@

1

CA:

ð46Þ

The dimensions of "M1, "M2, "N1 and "N2 are, respectively,
(nþ nP)& (lþ nþ p2), m1& (lþ nþ p2), (lþ nþm2)&
(nþ nP) and (lþ nþm2)& p1.

Proof: The proof is based on the following lemma
and can be found in Hilaire and Chevrel (2008) and
Hilaire (2006).

Lemma 3.4: Let X be a matrix in Rp&l while G and H
are two transfer matrices independent of X with values in
Cm&p and Cl&n, respectively, and that are independent
of X. Then

@ðGXHÞ
@X

¼ G~H, ð47Þ

@ðGX!1HÞ
@X

¼ ðGX!1Þ~ ðX!1HÞ: ð48Þ

From (30), (5) and (6), it is possible to write

"A ¼
Aþ B2LJ!1NC2 B2CZ

BZC2 AZ

( )
þ

B2

0

( )
S C2 0
$ %

ð49Þ

and finally with Lemma 3.4

@ "H

@S
¼

B2

0

( )
~ C2 0
$ %

: ð50Þ

International Journal of Control 7
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The other derivatives @ "H
@R,

@ "H
@Q, . . . can be similarly

obtained and then gathered using

@

@Z
¼

! @
@J

@
@M

@
@N

@
@K

@
@P

@
@Q

@
@L

@
@R

@
@S

0

B@

1

CA: ð51Þ

œ

Proposition 3.5: The closed-loop transfer function
sensitivity matrix

"!H
!Z can be computed as

"!H

!Z

( )

i,j

¼ "H1Ei,j
"H2

++ ++
2 ð52Þ

with

"H1Ei,j
"H2 :¼

"A 0 "B
"M1Ei,j

"N1
"A "M1Ei,j

"N2

"M2Ei,j
"N1

"C "M2Ei,j
"N2

0

B@

1

CA ð53Þ

and Ei,j is the matrix of appropriate size with all elements
being 0 except the (i, j)-th element which is unity.

Proof: The proof is quite straightforward, and
comes from the definition of operator ~ in
Proposition 3.3. œ

Remark 3: In the SISO case, the problem becomes
simpler by noting that

"!H

!Z

( )

i,j

¼ ð "H2
"H1Þi,j

+++
+++
2

ð54Þ

¼

"A 0 "B
"M1

"N1
"A "M1

"N2

"M2
"N1

"C "M2
"N2

0

BB@

1

CCA

i,j

++++++++

++++++++
2

: ð55Þ

The (lþ nþ 1)& (lþ nþ 1) H2-norm evaluations here
require only lþ nþ 1 Lyapunov equations to be solved
(instead of the (lþ nþ p)& (lþ nþm2) equations in the
MIMO case represented by (53)), so this expression is
preferred.

3.3 Pole sensitivity measures

The IO-sensitivity does not explicitly consider the
stability of the closed-loop system. To ensure that the
implementation is stable, the sensitivity of the poles
may be considered. We define the following pole
sensitivity measure.

Definition 3.6: Consider a controller realisation
C :¼ (Z, l,m2, n, p2). The closed-loop pole sensitivity
measure is defined by

"#¼4
XnPþn

k¼1

@j ")kj
@Z

&WZ

++++

++++
2

F

, ð56Þ

where ")k
$ %

14k4nPþn
denotes the poles of the closed-loop

system (the eigenvalues of "A).

The following lemma will be required next to
evaluate "#.

Lemma 3.7: Consider a differentiable function f :
Rm&n!C, and two matrices Y2Rm&n and X2Rp&q.
Let Y0, Y1 and Y2 be constant matrices with appropriate
dimensions. Then the following results hold:

. if Y¼Y0þY1XY2, then

@f ðYÞ
@X

¼ Y>1
@f ðYÞ
@Y

Y>2 ,

. if Y¼Y0þY1X
!1Y2, then

@f ðYÞ
@X

¼ ! Y1X
!1$ %>@f ðYÞ

@Y
X!1Y2

$ %>
:

Proof: See Li (1998). œ

The measure "# can be evaluated, thanks to the
following proposition and lemma.

Proposition 3.8:

@j ")kj
@Z

¼ "M>1
@j ")kj
@ "A

"N>1 , ð57Þ

where "M1 and "N1 are defined in Equations (45) and (46).

Proof: The proof is similar to the one used in
Proposition 3.3, by applying Lemma 3.7, instead of
Lemma 3.4. œ

Lemma 3.9: Let M2Rn&n be diagonalisable. Let
()k)14k4n be its eigenvalues and (xk)14k4n the corre-
sponding right eigenvectors. Denote Mx ¼

4
(x1,

x2, . . . , xn) and My ¼ ð y1, y2, . . . , yn Þ ¼
4
M!H

x . Then

@)k
@M

¼ y ,k x
>
k 8k ¼ 1, . . . , n ð58Þ

and

@j)kj
@M

¼ 1

j)kj
Re ) ,k

@)k
@M

( )
, ð59Þ

where )* denotes the conjugate operation, Re()) the real
part and )H the transpose conjugate operator.

Proof: See Wu et al. (2001). œ

Remark 4: Similarly to the IO-sensitivity matrix, (38),
a pole sensitivity matrix can be constructed to evaluate
the overall impact of each coefficient. Let !j ")j

!Z denote
the pole sensitivity matrix defined by

!j ")j
!Z

( )

i,j

¼4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XnPþn

k¼1

@j ")kj
@Zi,j

( )2
vuut : ð60Þ
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It can be computed from

@j ")kj
@Zi,j

¼ @j ")kj
@Z

( )

i,j

: ð61Þ

During the quantisation process, Z is perturbed to
Zy and the closed-loop eigenvalues ")k

$ %
14k4nPþn

may be
outside the open unit disc. Therefore, it is crucial
to know when the FWL error will cause closed-loop
instability. On the basis of this consideration, a
stability related measure (Fialho and Georgiou 1994)
is defined as

$0ðZÞ ¼
4
inf
D

Dk kmax= realisation Zy makes the
!

closed-loop system unstable
"
: ð62Þ

This measure is not directly tractable (Fialho and
Georgiou 1994; Wu and Chen 2004), but can be
approximated with the following measure.

Definition 3.10: Consider a realisation C :¼ (Z, l,m2,
n, p2). The PSSM of C is defined by

$1ðZÞ ¼
4

min
14k4nPþn

1! "j)kj
WZk kF @j ")kj

@Z &WZ

+++
+++
F

: ð63Þ

This measure evaluates how a perturbation, D, of the
parameters, Z, can cause instability. It is determined by
how close the eigenvalues of "A are to the unit circle and
by how sensitive they are to the controller parameter
perturbation.

This measure is an extension to the SIF framework
of the sensitivity stability related measure originally
defined in the classical state-space framework (Li 1998)
and can be directly linked to an estimation of the
smallest wordlength required for the controller real-
isation to be implemented while preserving the closed-
loop stability (Wu et al. 2003).

3.4 Closed-loop roundoff noise analysis

Complementary to the other two measures, a mea-
sure of the roundoff noise in the generalised context
of the SIF is presented next. It extends the measure
proposed in Hilaire et al. (2007c) to the closed-
loop case.

3.4.1 Preliminaries

The first ($)- and second (#, )-order centred-
moments of a noise vector *(k) are denoted and
defined by

$* ¼
4
E *ðkÞ
! "

, ð64Þ

 * ¼
4
E *ðkÞ ! $*

$ %
*ðkÞ ! $*

$ %>n o
, ð65Þ

#2
* ¼
4
E *ðkÞ ! $*

$ %>
*ðkÞ ! $*

$ %n o
¼ tr  *

$ %
, ð66Þ

where E{)} and tr()) are, respectively, the mean and the
trace operator.

The following lemma recalls the basic properties
of noise transmission through a linear system:

Lemma 3.11: Assume the input noise, U(k), to be such
that

E UðkÞ ! $Uð Þ Uðk! l Þ ! $Uð Þ>
! "

¼ d0,l U ð67Þ

where !i,j represents the Kronecker delta. Denote by Y
the resulting output of the transfer matrix G. If
(A,B,C,D) is a state-space realisation of G, the first-
and second-order moments of Y are given by

$Y ¼ Gð1Þ$U ð68Þ

#2
Y ¼ tr  UðD>Dþ B>WoBÞ

$ %
, ð69Þ

where G(1) is the steady-state gain of G, given by
G(1)¼C(I!A)!1BþD and Wo is the observability
Gramian of G. Wo is the unique solution of the discrete
Lyapunov equation

Wo ¼ A>WoAþ C>C: ð70Þ

Proof: It is well known that #2
Y ¼ kG’Uk22, with ’U

the square root of  U (Papoulis 1991). The classical
formula linking the H2-norm to the Gramians is then
applied. œ

3.4.2 Roundoff noise analysis

Consider the realisation R :¼ (Z, l,m2, n, p2). By taking
into account the quantisation noise after each multi-
plication, the algorithm given by (3) becomes

[i] J:T,ðkþ 1Þ  M:X,ðkÞ þN:UðkÞ þ *TðkÞ
[ii] X,ðkþ 1Þ  K:T,ðkþ 1Þ þP:X,ðkÞ

þQ:UðkÞ þ *XðkÞ
[iii] Y,ðkÞ  L:T,ðkþ 1Þ þR:X,ðkÞ þS:UðkÞ þ *YðkÞ,

ð71Þ

where *T, *X and *Y are, respectively, the noise sources
corrupting T, X and Y (*T is added on JT(kþ 1), so
J!1*T is added on T(kþ 1)).

Noise sources *T, *X and *Y depend on

. the way the computations are performed, the
order of the arithmetic operations, etc.

. the fixed-point representation of the inputs,

. the fixed-point representation of the outputs,

International Journal of Control 9

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
I
U
S
 
J
u
s
s
i
e
u
/
P
a
r
i
s
 
6
]
 
A
t
:
 
1
2
:
0
2
 
1
4
 
J
a
n
u
a
r
y
 
2
0
1
0



. the fixed-point representation chosen for the
states and the intermediate variables,

. the fixed-point representation chosen for the
coefficients.

They are modelled as independent white noise,
characterised by their first- and second-order
moments.

Remark 5: The quantisation or roundoff process can
be considered as the addition of a noise, *. If "
represents the quantisation step, then (Widrow 1960)
$*¼ 0 and #*¼ "2/12 for roundoff, and $*¼ "/2 and
#*¼ "2/12 for truncation.

The noise is added through the controller and the
plant to the output Z(k) of the closed-loop system "S.
Denote the noise added to Z(k) by *0(k):

*0ðkÞ¼4 Z ,ðkÞ ! ZðkÞ: ð72Þ

Definition 3.12: The output noise power "P is defined
as the power of *0(k)

"P¼4 E *0>ðkÞ*0ðkÞ
n o

ð73Þ

Denote by * the vector stacking all the noise
sources

*ðkÞ¼4
*TðkÞ
*XðkÞ
*YðkÞ

0

B@

1

CA: ð74Þ

Proposition 3.13: The noise *0(k) corresponds to the
noise *(k) filtered through the transfer function "H1

defined in Equation (43) (the closed-loop system is then
equivalent to the system described in Figure 5). Hence,
we get

"P ¼ tr  *
"M>2 "M2 þ "M>1 "Wo

"M1

$ %$ %
þ $>*0$*0 , ð75Þ

where $*0 ¼ CZðI! AZÞ!1 "M1 þ "M2

$ %
$*.

Proof: If XP denotes the state of the plant,
Equation (71) combined with the state-space

realisation of the plant leads to

XP

X

 !

ðkþ 1Þ ¼ "A
XP

X

 !

ðkÞ þ "BWðkÞ þ "M1*ðkÞ

ZðkÞ ¼ "C
XP

X

 !

ðkÞ þ "DWðkÞ þ "M2*ðkÞ:

8
>>>>><

>>>>>:

ð76Þ

So, "H1 (cf. Equation (43)) appears explicitly as the
transfer function relating *(k) to Z(k) as stated in the
proposition. Therefore, P ¼ Ef*0>ðkÞ*0ðkÞg ¼ #2

*0 þ
$>*0$*0 and Lemma 3.11 gives the first- and second-
order moments. œ

Remark 6: Equation (75) is a good illustration of the
relationship between the work done in the hardware/
software (HW/SW) community and that done in the
control community. The former is based on the
accurate evaluation of the noise for particular
HW/SW fixed-point implementations on various
targets (DSP, FPGA) whereas the latter is based on
the search for good realisations with particular well-
conditioned structures. In the first case, only the
classical direct form is studied, whereas the actual
HW/SW impact is neglected in the second case.

The moments  * and $* depend only on the
HW/SW implementation, whereas the other terms
( "A, "C, "M1, "M2 and "Wo) depend only on the algorithm
used.

3.4.3 Roundoff noise gain

The closed-loop RNG is the output noise power in
a specific (and simplified) computational scheme: the
noise is assumed to appear only after each multiplica-
tion (roundoff after multiplication scheme). It is
modelled as a zero-mean centred, statistically indepen-
dent, white noise. Each noise source has the same
power #2

0 (determined by the wordlength chosen for
all the variables and coefficients).

Definition 3.14: The closed-loop RNG is defined as

"G¼4
"P

#2
0

: ð77Þ

This measure has been studied for the open-loop
case by Mullis and Roberts (1976), Hwang (1977) and
Gevers and Li (1993) and has been established for
classical state-space realisations and some other
particular realisations. The particular computational
scheme considered gives the moments of *T, *X and *Y:
here they depend only on the number of non-trivial
parameters in the realisation.

+

H̄

ξ (k) ξ′ (k)

W (k) Z (k)

Z∗ (k)
H̄1

Figure 5. Equivalent system with noise extracted.
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Let us introduce the matrices dJ to dS. They are
diagonal matrices defined by

ðdXÞi,i¼
4 number of non-trivial parameters

in the i-th row of X

# -
: ð78Þ

The trivial parameters considered are 0, 1 and !1
because they do not imply a multiplication.

Step [i] of algorithm (3) is realised as follows (for
i2 {1, 2, . . . , l }):

Tiðkþ1Þ 
Xn

j¼1
MijXj ðkÞþ

Xm

j¼1
NijUj ðkÞ!

X

j5i

JijTj ðkþ1Þ:

ð79Þ

Each multiplication by a non-trivial parameter implies
a quantisation noise. Since they are independent
centred white noise,  *T is given by

 *T ¼ dM þ dN þ dJð Þ#2
0 ð80Þ

(J is a lower diagonal matrix with 1 on the diagonal. So
the number of non-trivial parameters on the i-th row is
equal to the number of non-trivial parameters of the
i-th row restricted to its subdiagonal part).

In the same way (steps [ii] and [iii]),

 *Y ¼ dL þ dR þ dSð Þ#2
0 ð81Þ

 *X ¼ dK þ dP þ dQ
$ %

#2
0 : ð82Þ

Proposition 3.15: The RNG is given by

"G ¼ tr dZ "M>2 "M2 þ "M>1 "Wo
"M1

$ %$ %
ð83Þ

where

dZ ¼
dJ þ dM þ dN

dK þ dP þ dQ

dL þ dR þ dS

0

B@

1

CA

ð84Þ

(dZ is also defined by Equation (78) applied on Z).

Proof: The noise sources *T, *X and *Y are zero mean
centred independent noises so $* is null and

 * ¼
 *T

 *X

 *Y

0

B@

1

CA ð85Þ

œ

4. Optimal design

For the implementation of a digital controller, it is
important to choose a realisation having low

FWL effects. Hence it is of interest to find an optimal
realisation in a sense to be defined.

Problem 4.1: The global optimal realisation problem
is to find the best realisation Ropt associated with the
transfer function H according to the criteria J

Ropt ¼ arg min
R2RH

J ðRÞ: ð86Þ

Due to the size of RH, this problem generally
cannot be solved practically. Hence the following
problem is introduced to restrict the search to some
particular structurations.

Problem 4.2: Consider some structurations (Si)14i4N.
The optimal structured realisation problem is to find
the optimal realisation RS

opt:

RS
opt ¼ argmin

R2RSi
H

14i4N

J ðRÞ:
ð87Þ

Since the measure J could be non-smooth and/or
non-convex, the adaptive simulated annealing (ASA)
(Ingber 1996; Chen and Luk 1999) method has been
chosen to solve Problem 4.2. This method has worked
well for other optimal realisation problems (Wu et al.
2001).

If the equivalent structured realisations are
linked through the similarity transformation of
Proposition 2.5, the computation of the previously
defined FWL measures can be improved thanks to the
following proposition:

Proposition 4.3: If we consider two realisations Z0 and
Z1 such that

Z1 ¼ T 1Z0T 2, ð88Þ

where

T 1 ¼

Y

U!1

Ip

0

BB@

1

CCA, T2 ¼

W

U

Im

0

BB@

1

CCA ð89Þ

then the closed-loop measures of realisation Z1 can be
computed from those of Z0 according to

"!H

!Z

( )

i,j

*****
Z1

¼ "H1

**
Z0
T !11 Ei,jT !12

"Hj2
**
Z0

+++
+++
2
, ð90Þ

@j ")kj
@Z

****
Z1

¼ T !>1
@j ")kj
@Z

****
Z0

T !>2 : ð91Þ

International Journal of Control 11
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Proof: The proof comes directly from

"H1

**
Z1
¼ "H1

**
Z0
T !11 , "H2

**
Z1
¼ T !12

"H2

**
Z0
: ð92Þ

œ

A Matlab toolbox (FWR Toolbox, available from
http://fwrtoolbox.gforge.inria.fr/) has been
specially developed to use the SIF and solve optimal
structured realisation problems with the previously
defined measures.

5. Example

The example is taken from Gevers and Li (1993,
pp. 236–237). The discrete time system to be controlled
is given by

Ap ¼

3:7156 !5:4143 3:6525 !0:9642
1 0 0 0

0 1 0 0

0 0 1 0

0

BBBB@

1

CCCCA
,

ð93Þ

Bp ¼ 1 0 0 0
$ %>

, ð94Þ

Cp ¼ 0:1116 0:0043 0:1088 0:0014
$ %

& 10!5:

ð95Þ

Remark 1: All the computations are performed with
Matlab double floating-point precision, but the results
are quoted only to 4 significants digits (which may be
insufficient to characterise the considered system). For
each different realisation, bold font is used to exhibit
non-trivial parameters (the weighting matrice WZ is
built accordingly).

The plant corresponds to the following standard
form (see (27))

P :¼
A Bp Bp

Cp 0 0

Cp 0 0

0

B@

1

CA: ð96Þ

The initial realisation of the feedback controller is
designed to place the closed-loop poles at

)1,2 ¼ 0:9844* 0:0357j, )3,4 ¼ 0:9643* 0:0145j,

ð97Þ

)5,6 ¼ 0:7152* 0:6348j, )7,8 ¼ 0:3522* 0:2857j:

ð98Þ

The controller has the following transfer function

H : z!
38252z3! 101878z2þ 91135z! 27230

z4! 2:3166z3þ 2:1662z2! 0:96455zþ 0:17565
:

ð99Þ

Let us consider different realisations for this
controller. The realisations, Z1–Z11, are described
below. The values of the measures are shown in
Table 1. The realisations and corresponding sensitivity
matrices, ! "H

!Z and !j ")j
!Z , are given in the Appendix. Note

that only the bold values shown in the realisations are
considered, via the weighting matrix WZ.

State-space realisations:

Z1: Canonical form (corresponds to direct form II).
This realisation has the following results:

"MW
L2
¼ 1:9046eþ 7, "# ¼ 3:3562eþ 7,

$1 ¼ 1:8065e! 6, "G ¼ 1:186eþ 6
ð100Þ

Z2: The internally balanced state-space realisation is
often considered as a low sensitivity realisation (Gevers
and Li (1993) shows that the balanced realisations

Table 1. Example 1: FWL measures for different realisations.

"MW
L2

"# $1
"G "TO Nb. op.

Z1 1.9046eþ7 3.3562eþ7 1.8065e!6 1.186eþ6 3.6764eþ8 7þ 8&
Z2 3.6427eþ5 6.5007eþ5 7.4933e!6 3.6582eþ2 1.1387eþ5 19þ 24&
Z3 1.5267eþ3 1.6689eþ4 1.167e!4 1.7455eþ2 5.4111eþ4 19þ 24&
Z4 1.6272eþ3 2.7425eþ3 1.189e!4 1.1778eþ2 3.6512eþ4 19þ 24&
Z5 1.9474eþ13 1.2294eþ13 1.7244e!9 3.2261e!3 1.7239eþ10 19þ 24&
Z6 2.8696eþ3 4.5371eþ3 9.2351e!5 7.9809e!3 6.0078eþ0 19þ 24&
Z7 1.5342e!2 8.1051e!2 6.6047e!2 2.8082e!8 4.5466eþ0 11þ 12&
Z8 1.5341e!2 8.089e!2 6.6045e!2 4.217e!8 4.8783eþ0 11þ 16&
Z9 1.1388e!1 2.8203e!2 6.6159e!2 3.7783e!6 9.8937eþ1 11þ 16&
Z10 1.5342e!2 8.0015e!2 6.6052e!2 4.1742e!8 4.8371eþ0 11þ 16&
Z11 1.6065e!2 3.8802e!2 6.0413e!2 4.7451e!8 3.5597eþ0 11þ 16&

12 T. Hilaire et al.
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minimises the L1/L2 sensitivity measure). It has the
following measure values:

"MW
L2
¼ 3:6427eþ 5, "# ¼ 6:5007eþ 5,

$1 ¼ 7:4933e! 6, "G ¼ 365:82:
ð101Þ

Despite it being fully parametrised (24 parameters), its
overall sensitivity is lower than the canonical form.
Z3: With the similarity

T 1 ¼
:

U!1

1

0

B@

1

CA, T 2 ¼
:

U
1

0

B@

1

CA ð102Þ

it is possible to consider all state-space equivalent
realisations, and find the "MW

L2
-optimal state-space

realisation Z3. Its closed-loop transfer function sensi-
tivity measure is "MW

L2
¼ 1526:7 and is much lower than

other state-space realisations.
Z4: It is also possible to consider the "#-optimal state-
space realisation. Then "# ¼ 2742:5.
Z5: "G-optimal state-space Z5. Here, "G is very low:
"G ¼ 0:0032261, but the other measures are quite poor:

"MW
L2
¼ 1:9474eþ 13, "# ¼ 1:2294eþ 13,

$1 ¼ 1:7244e! 9: ð103Þ

Even if the goal of this article is not multi-objective
optimal realisation, it is interesting to look for a
realisation that is good enough for the three measures
"MW
L2
, "# and "G. Let us denote

"TOðZÞ ¼4
"MW
L2
ðZÞ

"MW opt
L2

þ
"#ðZÞ
"#opt

þ
"GðZÞ
"Gopt

, ð104Þ

where "MW opt
L2

is the optimal transfer function sensitiv-
ity value ( "MW opt

L2
¼ "MW

L2
ðZ3Þ), "#opt the optimal value

for the pole sensitivity ( "#opt ¼ "#ðZ4Þ) and "Gopt the
optimal RNG value ( "Gopt ¼ "GðZ5Þ).

Remark 2: This tradeoff measure is defined for this
example and this structuration (state-space). Clearly,
it is lower bounded by 3.

Z6: Tradeoff-optimal state-space Z6. With this mea-
sure, we aim to have a realisation that simultaneously
has low transfer function sensitivity, pole sensitivity
and RNG. The tradeoff measure is quite low
( "TO ¼ 6:0078), and the corresponding measures are:

"MW
L2
¼ 2869:6, "# ¼ 4537:1,

$1 ¼ 9:2351e! 5, "G ¼ 0:0079809:
ð105Þ

o direct forms II transposed: The realisation (24) is
considered with various values for (% i)14i4n. D is
chosen to be 2!3. Since there is no possibility here to use

similarity on Z like that proposed in Proposition 2.5,
the realisation matrix Z cannot be built from another
Z matrix: for (% i)14i4n given, the parameters (&i)14i4n

and ('i)04i4n have to be rebuilt from (19).

Z7: with %¼ (1 1 1 1)>, the direct form II with the
!-operator is obtained.
Z8: MLW

2
-optimal "DFIIt. The optimisation gives

% ¼ 0:29758 0:99939 0:99953 0:99977
$ %>

:

ð106Þ

Z9: "#-optimal "DFIIt. The optimisation gives

% ¼ 0:35114 0:30858 0:66309 0:99856
$ %>

:

ð107Þ

Z10: "G-optimal "DFIIt. The optimisation gives

% ¼ 0:93207 0:99335 0:99863 0:99963
$ %>

:

ð108Þ

Z11: It is here also possible to apply a new tradeoff
measure, like the one in equation (104) (with new
"MW opt
L2

, "#opt and "Gopt values). The "TO-optimal real-
isation (Equation (A5)) is obtained with

% ¼ 0:99744 0:41349 0:8646 0:99346
$ %>

: ð109Þ

and "TO ¼ 3:5597.

Table 1 gives all the measure values for the
realisation Z1–Z11. Realisations Z6 and Z11 are
interesting, low sensitivity, low roundoff noise realisa-
tions. Moreover Z11 requires fewer operations
(11 additions and 16 multiplications) than Z6. These
results are case dependent and some controllers may be
less sensitive in state-space forms than in "DFIIt form.

The pseudocode algorithms associated with realisa-
tions Z6 and Z11 are given by Algorithms 1 and 3 listed
in the Appendix. It is assumed that these realisations
are performed on a fixed-point 16-bit processor (the
additions are 32 bits, without guard bits for the
additions) and the input is in the interval [!10, 10]
(so 11 bits are given for the fractional part). Due to the
gain of the controller, the output has !5 bits for the
fractional part (the integer value coding for the output
must be multiplied by 26 to obtain the real value). The
binary point position is adjusted for each intermediate
variable, state and coefficient. So the fixed-point
algorithms of realisations Z6 and Z11 are given by
Algorithms 2 and 4.

6. Conclusions

The SIF is a powerful tool for controller implementa-
tion modelling. It provides a macroscopic description

International Journal of Control 13
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of the algorithm to be implemented, in the context of
embedded systems. Being more general than previous
forms, it allows, in a unified framework, the analysis
and design of particular realisations of linear con-
trollers. Different measures can give insight on the
quality of a given realisation: IO-sensitivity, pole
sensitivity, RNG, amount of computation, etc. All
have been defined in the new context of the SIF. Some
of them are worked out in a efficient way through the
use of Gramians and Lyapunov equations.

The SIF allows all possible linear realisations, not
necessarily of the same order, to be compared. Some
optimisations are computationally tractable, by
restricting the class of equivalent realisations to specific
subclasses or structures. This has been tested in
the case of classical state-space realisations, with
!-structures, etc. The sparse realisation proposed
recently in Li and Zhao (2004) has also been examined.

There are numerous areas for future work. First, it
would be of practical interest to make use of the SIF to
propose some practical realisations that are generically
good (sparse and faithful) in a given context. Second
is the modelling of internal delay, this being both
computational delay and communication time delay,
for example, when the controller algorithm has to be
split on different processors. Third is to take more
precisely into account HW/SW target, so linking the
present work more deeply with what is done in the
HW/SW community. Last, but not the least, improving
the optimisation process (cheap evaluation of the
measures, choice and tuning of the optimisation
solver, distance evaluation to the optimal optimum)
is still an important challenge, although the developed
Matlab toolbox, the FWR Toolbox, has been able to
provide interesting results in different situations.
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Appendix. Algorithms and numerical values Input: u : 16 bits integer
Output: y : 16 bits integer
Data: xn : array of four 16 bits integers
Data: xnp : array of four 16 bits integers
Data: Acc : 32 bits integer
begin

// compute xnp(1)
Acc ← xn(1) ∗ 16477;
Acc ← Acc + xn(2) ∗ −12633;
Acc ← Acc + xn(3) ∗ 6457;
Acc ← Acc + xn(4) ∗ −7047;
Acc ← Acc + u ∗ −498;
xnp(1) ← Acc >> 14;
// compute xnp(2)
Acc ← xn(1) ∗ −13976;
Acc ← Acc + xn(2) ∗ 18235;
Acc ← Acc + xn(3) ∗ 2562;
Acc ← Acc + xn(4) ∗ −14063;
Acc = Acc + u ∗ 748;
xnp(2) ← Acc >> 14;
// compute xnp(3)
Acc ← xn(1) ∗ −26423;
Acc ← Acc + xn(2) ∗ 22730;
Acc ← Acc + xn(3) ∗ 9504;
Acc ← Acc + xn(4) ∗ −15444;
Acc ← Acc + u ∗ 2241;
xnp(3) ← Acc >> 14;
// compute xnp(4)
Acc ← xn(1) ∗ −21277;
Acc ← Acc + xn(2) ∗ 24592;
Acc ← Acc + xn(3) ∗ −7956;
Acc ← Acc + xn(4) ∗ −1565;
Acc ← Acc + u ∗ 1950;
xnp(4) ← Acc >> 12;
// compute the output
Acc ← xn(1) ∗ 21996;
Acc ← Acc + xn(2) ∗ −2083;
Acc ← Acc + xn(3) ∗ −4531;
Acc ← Acc + xn(4) ∗ 22994;
y ← Acc >> 15;
// save the states
xn ← xnp

end

Algorithm 2: Fixed-point algorithm of realisation Z6.

Input: u : real
Output: y : real
Data: xn : array of four reals
Data: xnp : array of four reals
Data: Acc : real
begin

// compute xnp(1)
Acc ← xn(1) ∗ 1.0056699573;
Acc ← Acc + xn(2) ∗ −0.3855253273;
Acc ← Acc + xn(3) ∗ 0.7882084769;
Acc ← Acc + xn(4) ∗ −0.8602211557;
xnp(1) ← Acc + u ∗ −1991.2978135292;
// compute xnp(2)
Acc ← xn(1) ∗ −1.7060282729;
Acc ← Acc + xn(2) ∗ 1.1129704773;
Acc ← Acc + xn(3) ∗ 0.6255751647;
Acc ← Acc + xn(4) ∗ −3.4333411367;
xnp(1) ← Acc + u ∗ 5980.9414091468;
// compute xnp(3)
Acc ← xn(1) ∗ −0.8063580681;
Acc ← Acc + xn(2) ∗ 0.3468387941;
Acc ← Acc + xn(3) ∗ 0.5800952206;
Acc ← Acc + xn(4) ∗ −0.9426058134;
xnp(3) ← Acc + u ∗ 4482.5598405197;
// compute xnp(4)
Acc ← xn(1) ∗ −2.5973181092;
Acc ← Acc + xn(2) ∗ 1.5009691911;
Acc ← Acc + xn(3) ∗ −1.9422913020;
Acc ← Acc + xn(4) ∗ −0.3821356552;
xnp(4) ← Acc + u ∗ 15599.2014809957;
// compute the output
Acc ← xn(1) ∗ 1.3425518386;
Acc ← Acc + xn(2) ∗ −0.0635813666;
Acc ← Acc + xn(3) ∗ −0.5530485340;
y ← Acc + xn(4) ∗ 2.8068277711;
// save the states
xn ← xnp

end

Algorithm 1: Realisation Z6.
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
I
U
S
 
J
u
s
s
i
e
u
/
P
a
r
i
s
 
6
]
 
A
t
:
 
1
2
:
0
2
 
1
4
 
J
a
n
u
a
r
y
 
2
0
1
0



Z1 ¼

.....................................................................
0 0 0 !0:17565 1

1 0 0 0:96455 0

0 1 0 !2:1662 0

0 0 1 2:3166 0
.....................................................................
38252 !13264 !22452 !13615 0

0

BBBBBBBBB@

1

CCCCCCCCCA

,

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Z2 ¼

.............................................................................................
0:11188 !0:54082 0:19539 !0:053116 203:18

0:54082 0:72159 0:1647 !0:034978 63:57

0:19539 !0:1647 0:76428 0:12977 !32:042
0:053116 !0:034978 !0:12977 0:71885 !4:1143

.............................................................................................
203:18 !63:57 !32:042 4:1143 0

0

BBBBBBBBB@

1

CCCCCCCCCA

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

ðA1Þ

Z3 ¼

...................................................................................
3:0771 1:9943 !3:5223 !0:81099 !8:6995
19:018 17:794 !28:317 !4:7792 !14:709
15:651 13:987 !22:86 !4:4711 !24:353
!11:38 !10:264 17:463 4:3055 19:502

...................................................................................
3953:9 3517:5 !5956:1 !1059:4 0

0

BBBBBBBBB@

1

CCCCCCCCCA

,

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Input: u : 16 bits integer
Output: y : 16 bits integer
Data: xn : array of four 16 bits integers
Data: Acc : 32 bits integer
Data: T : array of four 16 bits integers
begin

// Intermediate variables
T ← xn;
// compute xn(1)
Acc ← T (1) ∗ −17601;
Acc ← Acc + T (2) << 13;
Acc ← Acc + xn(1) ∗ 16342;
Acc ← Acc + u ∗ 4781;
xn(1) ← Acc >> 14;
// compute xn(2)
Acc ← T (1) ∗ −18065;
Acc ← Acc + T (3) << 13;
Acc ← Acc + xn(2) ∗ 6775;
Acc ← Acc + u ∗ −2582;
xn(2) ← Acc >> 14;
// compute xn(3)
Acc ← T (1) ∗ −25826;
Acc ← Acc + T (4) << 12;
Acc ← Acc + xn(3) ∗ 16162;
Acc ← Acc + u ∗ 944;
xn(3) ← Acc >> 14;
// compute xn(4)
Acc ← T (1) ∗ −30395;
Acc ← Acc + xn(4) ∗ 32554;
Acc ← Acc + u ∗ 1061;
xn(4) ← Acc >> 15;
// compute the output
y ← T (1);

end

Algorithm 4: Fixed-point algorithm of realisation Z11.

Input: u : real
Output: y : real
Data: xn : array of four reals
Data: Acc : real
Data: T : array of four reals
begin

// Intermediate variables
T (1) ← xn(1) ∗ 0.125;
T (2) ← xn(2) ∗ 0.125;
T (3) ← xn(3) ∗ 0.125;
T (4) ← xn(4) ∗ 0.125;
// compute xn(1)
Acc ← T (1) ∗ −8.5940609251;
Acc ← Acc + T (2);
Acc ← Acc + xn(1) ∗ 0.9974440349;
xn(1) ← Acc + u ∗ 306012.0144582504;
// compute xn(2)
Acc ← T (1) ∗ −35.2839059945;
Acc ← Acc + T (3);
Acc ← Acc + xn(2) ∗ 0.4134893631;
xn(2) ← Acc + u ∗ −660870.6659178101;
// compute xn(3)
Acc ← T (1) ∗ −201.7634931054;
Acc ← Acc + T (4);
Acc ← Acc + xn(3) ∗ 0.9864594697;
xn(3) ← Acc + u ∗ 966164.3351972550;
// compute xn(4)
Acc ← T (1) ∗ −237.4643508571;
Acc ← Acc + xn(4) ∗ 0.9934647479;
xn(4) ← Acc + u ∗ 1086873.2436256856;
// compute the output
y ← T (1);

end

Algorithm 3: Realisation Z11.
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Z4 ¼

......................................................................................
2:1976 2:225 1:4698 !0:6568 !77:48
0:18131 !0:82788 !1:5695 !0:4138 69:498

!0:95285 1:0322 2:2218 0:88142 !45:666
2:5862 !0:54545 !1:6235 !1:2749 42:167

......................................................................................
!394:63 40:523 200:59 332:48 0
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26860 1:1171eþ 5 !64054 16716 6:2454eþ 8

3731:3 15520 !8898:5 2322:2 8:4763eþ 7

23883 99334 !56955 14864 5:5625eþ 8

23421 97413 !55854 14577 5:612eþ 8
................................................................................................
!0:18915 !0:78675 0:4511 !0:11772 0
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1:0057 !0:38553 0:78821 !0:86022 !1991:3
!1:706 1:113 0:62558 !3:4333 5980:9

!0:80636 0:34684 0:5801 !0:94261 4482:6

!2:5973 1:501 !1:9423 !0:38214 15599
...........................................................................................

1:3426 !0:063581 !0:55305 2:8068 0
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!1 0 0 0 0:125 0 0 0 0

0 !1 0 0 0 0:125 0 0 0

0 0 !1 0 0 0 0:125 0 0

0 0 0 !1 0 0 0 0:125 0
...........................................................................................................
!13:467 1 0 0 1 0 0 0 3:0601eþ 5

!77:847 0 1 0 0 1 0 0 8:2411eþ 5

!214 0 0 1 0 0 1 0 1:0924eþ 6

!248:44 0 0 0 0 0 0 1 1:1418eþ 6
...........................................................................................................

1 0 0 0 0 0 0 0 0
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Z11 ¼

!1 0 0 0 0:125 0 0 0 0

0 !1 0 0 0 0:125 0 0 0

0 0 !1 0 0 0 0:125 0 0

0 0 0 !1 0 0 0 0:125 0
................................................................................................ .............................
!8:5941 1 0 0 0:99744 0 0 0 3:0601eþ 5

!35:284 0 1 0 0 0:41349 0 0 !6:6087eþ 5

!201:76 0 0 1 0 0 0:98646 0 9:6616eþ 5

!237:46 0 0 0 0 0 0 0:99346 1:0869eþ 6
................................................................................................ ............................

1 0 0 0 0 0 0 0 0
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