
TOWARD TOOLS AND METHODOLOGY FOR THE FIXED-POINT IMPLEMENTATION OF
LINEAR FILTERS

Thibault Hilaire, IEEE Member
University Pierre et Marie Curie, Paris

ABSTRACT

For embedded systems, Finite Word Length (FWL) effect is still a
critical issue in digital filter implementation with fixed-point arith-
metic. Few partial solutions exist, but none tackles it in its global na-
ture and consider the complete tradeoff between performance, pre-
cision, complexity and hardware cost. This paper proposes to for-
malize this complex problem and exhibits a unifying approach for
the optimal implementation problem of linear filters/controllers. The
proposed methodology is based on previously proposed formal de-
scription and measures of the FWL effects. A two steps optimization
is proposed and a small example emphasizes the process.

Index Terms— Implementation, linear filters, fixed-point arith-
metic, optimal realization, methodology.

1. INTRODUCTION

The great majority of embedded signal processing and control
algorithms is implemented in digital devices such as DSP, micro-
controllers or FPGA. These devices are quite cheap and widely
used, but the counterpart is that they have limited resources, in
computations or in energy. The fixed-point arithmetic is then of-
ten used, but the numerical implementation of the algorithms can
suffer from a deterioration in performances and characteristics, due
to the finite-precision of the computations. These degradations has
two separate origins, corresponding to the quantization of the em-
bedded coefficients and the roundoff errors occurring during the
computation.

The constraints on embedded systems are strong (perfor-
mances/precision, resources, execution time, power consumption,
area of the chipset, etc.) and the search for an optimal imple-
mentation of a given algorithm is a very important topic. For the
linear algorithms we are considering here, this problem is studied
on three different angles, by people from signal processing, con-
trol and computer science. Our purpose here is to aggregate ideas,
tools and methods from these three communities and to propose a
global solution for the optimal implementation problem of linear
filters/controllers in fixed-point arithmetic, from their synthesis to
their hardware/software implementation and code generation.

The paper is organized as follows. Some classical approaches
for the implementation are summarized in section 2, and the optimal
realization problem is formalized in section 3. Section 4 exhibits
the unifying approach proposed and some a priori/a posteriori mea-
sures based on formal descriptions of the algorithm and its imple-
mentation. Finally, a methodology is proposed in section 5 before
being illustrated on an example with the Finite Wordlength Realiza-
tion Toolbox in section 6.

This work has been funded by the engineering school Polytech’Paris-
UPMC (University Pierre et Marie Curie, Paris, France) and by the CNRS
project PEPS ”ReSyst”.

2. CLASSICAL TOOLS AND APPROACHES FOR THE
IMPLEMENTATION

2.1. State-space realizations

State-space systems and their implementation are widely studied,
specially by control community [1, 2]. Let (A, b, c, d) be a stable,
controllable and observable linear discrete time Single Input Single
Output (SISO) state-space system, i.e.{

x(k + 1) = Ax(k) + bu(k)
y(k) = cx(k) + du(k)

(1)

where u(k) is the scalar input, y(k) the scalar output and x(k) is the
state vector.
Its input-output relationship is given by the scalar transfer function
h : C→ C defined by h : z 7→ c(zIn −A)−1b+ d.

Since the state-space equations corresponding to a transfer func-
tion are not unique, it is possible to select one state-space struc-
ture that minimizes the impact of the implementation. Applying
a coordinate transformation, defined by x̄(k) , U−1x(k) to the
state-space system (A, b, c, d), leads to a new equivalent realization
(U−1AU ,U−1b, cU , d). These two realizations are equivalent in
infinite precision but are no more equivalent in finite precision (fixed
point arithmetic, floating-point arithmetic, etc.), so it is of interested
to evaluate how much the system is sensitive to the coefficient quan-
tization and find one realization among the equivalent ones that min-
imizes that measure.
It is common to consider the sensitivity of the transfer function with
respect to the coefficients. Gevers and Li [1] have proposed the L2-
sensitivity measure to evaluate the coefficient roundoff errors. This
tractable measure is defined by

ML2 ,

∥∥∥∥ ∂h∂A
∥∥∥∥2

2

+

∥∥∥∥∂h∂b
∥∥∥∥2

2

+

∥∥∥∥∂h∂c
∥∥∥∥2

2

+

∥∥∥∥∂h∂d
∥∥∥∥2

2

(2)

and depends on the realization. It is then natural to define the fol-
lowing problem:

Uopt = arg min
U invertible

ML2(U). (3)

In [1], it is shown that this problem has one unique solution. Hence,
for example, a gradient method can be used to solve it.

In addition to the transfer function sensitivity measure, some
other sensitivity-based measures have been developed : the perturba-
tions of the system poles is specially studied [3, 4, 2]. Poles are not
only structuring parameters, but also indicators of the stability. Let
(λk)16k6n denote the poles and zeros of the system (i.e. the eigen-
values of A).Since the FWL error that can cause a stable system to
become unstable is determined by how close the pole are to 1 and
how sensitive they are to the parameter perturbations, the following

measure is classically used [5]:

Ψ ,
n∑
k=1

ωk

∥∥∥∥∂ |λk|∂A

∥∥∥∥2

F

, (4)

where (ωk)16k6n are some weighting coefficients. Generally ωk =
1

1−|λk|
to give more weight for the poles closed to the unit circle [5].

The pole sensitivity measure is also used in closed-loop context, in
some stability-related measures [2].

2.2. Roundoff noise

In addition to parametric errors, the numerical noises in the compu-
tations are also studied. Indeed, each quantization is equivalent to
add an independent white noise to the signal to quantized [6, 7] and
these noises propagate through the computation up to the output(s).

The most common used criteria for evaluating these roundoff
noises is the Signal to Quantization Noise Ratio (SQNR), defined by

SQNR ,
σ2
y

σ2
ξ†

=
E
{
y>(k)y(k)

}
E {ξ>(k)ξ(k)} (5)

where ξ†(k) is the overall noise defined as the difference between
the mathematical output(s) y(k) and the fixed-point implemented
output y†(k), E{.} is the mean operator, and σ2

y and σ2
ξ† denote the

second-order moment (i.e. the power) of the output y and the noise
ξ†, respectively,

In other words, the implemented output y† can be seen as the
mathematical output y, perturbed with an additive noise ξ†(k).
Moreover, if ξ(k) is a vector collecting all the roundoff noise occur-
ring from quantizations in the computations at step k, then ξ†(k) can
be seen as the output of ξ(k) through a given filterHξ to determine,
as shown in figure 1 [8] (this is due to the linearity of the filter).

mathematical
filter

u(k) y(k)

y†(k)

ξ†(k)

+

Hξ
ξ(k)

Fig. 1. Implemented filter, with quantization noises extracted

Different methods are used to determined the SQNR (5) or
the roundoff noise power σ2

ξ† . This could be measured by sim-
ulations [9, 10] or in some cases evaluated by analytical ap-
proaches [8, 11].

2.3. Different possible structures

An important point in our approach is the set of possible algorithms
to realize a given filter/controller. Some of them are quite known and
used, like the Direct Form, but they do not often propose good nu-
merical properties. In addition to the state-space realizations, where
an infinity of equivalent realizations are possible (parametrized by a
transformation matrix U), it exists plenty of other equivalent realiza-
tions.

For a n-th order filter, these structured realization can have from
2n+ 1 coefficients (direct forms) up to (n+ 1)2 (fully parametrized
state-space realizations) or even more, but all with different robust-
ness to the fixed-point implementation.

Some of the interesting structures that should be considered are:

• the classical forms (such as Direct Form I and II, transposed
or not, state-space realization, ...) ;

• realizations with the δ-operator, defined by δ , q−1
∆

, where
q is the classical shift operator, and ∆ a strictly positive con-
stant [12]. These realizations are similar to the classical real-
izations (direct form or state-space), but using a δ−1 operator
instead of a delay q−1 operator. They often present superior
numerical properties since ∆ > 1 [1] ;

• realizations with the ρ-operator, a very promising extension
of the δ-operator with extra-parameters. The ρ-Direct Form
II transposed (ρDFIIt) [13] and the ρ-modal forms [14] are
good examples;

• wave lattice filter, warped filters and some other specific real-
izations like LGC or LCW-structures [15], ...

Except the direct forms, all these structured realizations are param-
etrized by several parameters (like the transformation matrix U for
the q-state-space), leading for each structure to an infinite number of
realizations. In addition, some values of these tuning parameters can
lead to sparse realizations (i.e. realizations with trivial coefficients
like 0 or ±1), to decrease the computational cost [16].
Also, it is possible to decompose a filter in cascaded and/or parallel
filters, and each one could be realized with one of the previous struc-
tures (mixed realizations are also possible), increasing the number of
possibilities.

All these equivalent realizations have different FWL properties
and different number of coefficients. So they should all be taken
in consideration for the research of the optimal implementation of a
given filter, in order to determine the tradeoff between precision and
computational cost.

3. OPTIMAL REALIZATION PROBLEM

These different aspects of the same problem show that it is very im-
portant to consider the problem from every angle and to build appro-
priate tools and methodology for the search for an optimally imple-
mented realization.
This is a very difficult multi-objectives optimization problem, and as
far as we know, there is no such global approach in the literature1.

There is two kinds of objectives to consider:

• Some objectives relative to performance under finite precision.
They should be able to evaluate

– that the output roundoff noise induced by the implementa-
tion is quite low relatively to the output ;

– that the transfer function is not too much modified, spe-
cially for certain frequency ranges. If the filter/controller
were designed to follow certain specifications like stop-
band/passband frequency and/or attenuation, its fixed-
point version should also respect them ;

– that the stability is preserved, or that the poles (specially
in closed-loop context) do not move too much.

• Some objectives relative to computational cost:

– the number of operations, the number of coefficients;

1For example, fdatool from Mathworks helps to implement filters by
showing characteristics of the implemented version, according to some real-
ization and implementation scheme, but no optimization on the realization or
the wordlength are performed.

– the surface or the power consumption if the filter is imple-
mented on FPGA or ASIC ;

– the computational time: it is linked to the number of oper-
ations, but also to its parallelization degree (for example,
the ρ-modal realization exhibited in [14] is highly paral-
lelisable).

These different objectives can be organized in two categories:

• those that do not consider the concrete HW/SW fixed-point
implementation. We can denote them a priori measures, be-
cause they do not require any information about the fixed-
point implementation and only consider the algorithm used
to numerically realize the filter/controller. They estimate the
robustness of the algorithm with respect to the implementa-
tion.

• those that are based on a concrete HW/SW fixed-point im-
plementation. We can denote them a posteriori because they
can only be applied after having completed the implementa-
tion process. They can evaluate or measure the impact of a
given implementation (depending on the precision of the cri-
teria used).

With these two different levels of objectives, there is two differ-
ent optimization steps. The first is based on a priori implementa-
tions and considering the algorithms only (the choice of one realiza-
tion among the set of equivalent realizations), whereas the second is
based on the implementation itself (wordlength, quantization modes,
shifts to align the binary-point position for the arithmetic operations,
etc.). Both are linked but it is too difficult for the moment to optimize
them simultaneously.

4. UNIFYING APPROACH

After having defined the optimal realization problem, we need a gen-
eral unifying approach in order to formalize the set of equivalent re-
alizations, to formalize a fixed-point implementation that can guar-
anty no overflows or underflows (depending on wordlengths used for
the coefficients, variables and the arithmetic operators) and to design
some tractable analytic measures to evaluate the FWL impact2.

4.1. Specialized Implicit Framework

Many controller/filter forms, such as lattice filters and δ-operator
controllers, make use of intermediate variables, and hence cannot
be expressed in the traditional state-space form. The SIF has been
proposed in [17] in order to model a much wider class of discrete-
time linear time-invariant controller/filter realizations.

The model takes the form of an implicit state-space realization
specialized according to J 0 0
−K In 0
−L 0 Ip

t(k + 1)
x(k + 1)
y(k)

 =

0 M N
0 P Q
0 R S

 t(k)
x(k)
u(k)

(6)

where the matrix J is lower triangular with 1’s on the main diagonal.
Note x is the state-vector and is stored from one step to the next,
whilst the vector t plays a particular role as t(k + 1) is independent
of t(k) and is defined as the vector of intermediary variables. The
particular structure of J allows to model how the computations are

2Due to lack of space, their analytical expression are not explicitly given
here, but can be found in the mentioned references.

decomposed with intermediates results that are reused in the same
step [17].

It is implicitly assumed throughout the paper that the computa-
tions associated with the realization (6) are executed in row order,
giving the following algorithm:

[i] J .t(k + 1)←M .x(k) +N .u(k)

[ii] x(k + 1)←K.t(k + 1) + P .x(k) +Q.u(k)

[iii] y(k)← L.t(k + 1) +R.x(k) + S.u(k)

(7)

Note that in practice, steps [ii] and [iii] could be exchanged to reduce
the computational delay. Also note that because the computations
are executed in row order and since J is lower triangular with 1’s on
the main diagonal, there is no need to compute J−1.

A realization of a transfer matrix H is entirely defined by the
matrix Z, where Z is partitioned according to3

Z ,

−J M N
K P Q
L R S

 (8)

In order to exploit the potential offered by the specialized im-
plicit form in improving implementations, it is necessary to describe
sets of equivalent system realizations.

Let us consider a realization Z0. Then all the realizations Z1

with

Z1 =

Y
U−1

Ip

Z0

W
U

Im

 (9)

and U , W , Y are non-singular matrices, are equivalent to Z0, and
share the same complexity (i.e. generically the same amount of com-
putation). It is also possible to just consider a subset of similarity
transformations that preserve a particular structure, by adding spe-
cific constraints on U , W or Y . Then, the set of equivalent realiza-
tions with the same structure will be defined with an initial realiza-
tion Z0 and some constraints on the transformation matrices.

All the linear realizations (direct forms, state-space, δ-realizations,
ρ-realizations, cascade decomposition, etc.) can be easily described
with the SIF. For example, a δ-state-space realization [12, 1]defined
by {

δ[x(k)] = Aδx(k) +Bδu(k)

y(k) = Cδx(k) +Dδu(k)
(10)

with δ = q−1
∆

(∆ ∈ R+∗ and q is the shift operator) can be ex-
pressed as In 0 0
−∆In In 0

0 0 Ip

t(k + 1)
x(k + 1)
y(k)

=

0 Aδ Bδ

0 In 0
0 Cδ Dδ

 t(k)
x(k)
u(k)

(11)

4.2. A priori measures

4.2.1. Input-output and pole sensitivity

The classical sensitivity measures (transfer function and pole sensi-
tivity) have been extended to the SIF in [17] (in [18], they are also
extended to controllers in closed-loop context, but not presented here

3This notation is introduced to make the further developments more com-
pact.

due to a lack of space). In that context, the L2-sensitivity measure in
SISO context4 is defined by

ML2 ,

∥∥∥∥ ∂h∂Z × δZ

∥∥∥∥2

2

(12)

where δZ is a weighting matrix indicating which coefficient of Z
will introduce error:

(δZ)ij ,

{
0 if Zij is exactly implemented
1 otherwise.

(13)

Moreover, the L2-norm in (12) can also be weighted by an other
transfer function so as to take more in consideration some frequency
ranges over the others.

The same extension to the SIF has been made for the pole sensi-
tivity measure. It is now defined by

Ψ ,
n∑
k=1

ωk

∥∥∥∥∂ |λk|∂Z
× δZ

∥∥∥∥2

F

. (14)

These two measure are tractable and their analytical expression
can be found in [17].

4.2.2. Roundoff noise gain

By considering the quantization noises after each multiplication, the
algorithm in (7) becomes:

[i] Jt(k + 1)←Mx(k) +Nu(k) + ξt(k)

[ii] x(k + 1)←Kt(k + 1) + Px(k) +Qu(k) + ξx(k)

[iii] y(k)← Lt(k + 1) +Rx(k) + Su(k) + ξy(k)

where ξt, ξx and ξy are the noises sources corrupting t, x and y.
These noises are usually modeled as independent white sequences.
Denote ξ the vector formed by all these noises:

ξ(k) =

ξt(k)
ξx(k)
ξy(k)

 . (15)

It is possible to aggregate all of them as an additive noise ξ
′
(k)

on the output. This (colored) noise results from the filtering of ξ(k)
via a transfer function Hξ (in Fig.1), directly determined from the
matrices J , K, L, M , N , P , Q, R and S (i.e. the transfer func-
tion from the intermediate variables, the states and the output to the
output).

Suppose that the roundoff noises ξ have all the same power σ2
0 .

The roundoff noise gain (RNG) measure is then defined by the ratio
of the power of global noise ξ

′
(k) and σ2

o [19]:

RNG ,
E{ξ

′
(k)>ξ

′
(k)}

σ2
0

. (16)

Its analytical expression can be found in [20]. It depends on Z, the
number of non-trivial parameters inZ and the observability Gramian
of the system.

4It has also been extended to MIMO case.

4.3. Fixed-point implementation scheme

In order to refine measures like the Roundoff Noise Gain, the exact
fixed-point representation should be known, specially the binary-
point position of each variable and intermediate computation, and
all the required shift necessary to align the binary-point position and
perform the additions.

The notation (β, γ) is used for the fixed-point representation of
a variable or coefficient (2’s complement scheme), according to Fig-
ure 2. β is the total wordlength of the representation in bits, whereas
γ is the wordlength of the fractional part (it determines the position
of the binary-point). They are suffixed by the variable/coefficient
they refer to and could be scalars, vectors or matrices.

± 21 20 2−1... ...2β−γ−2

β − γ − 1

β

γ

2−γ

integer part fractional part

s

Fig. 2. Fixed-point representation

The operation in algorithm (7) only requires scalar product, as
shown on figure 3 (some possible shifts can be added after multipli-
cation, in order to align the binary-point positions).

+

+

×

×

×

×

Q1[]

Q2[]

Qi[]

Q[]

E1

E2

Ei

En

P1

P2

Pi

Pn

(β, γ)(βADD + βg, γADD)

(βi, γi)

(β1, γ1)

(β′
1, γ

′
1)

(β′
i, γ

′
i)

(βADD, γADD)

(βADD + βg, γADD)

Qn[] +

Fig. 3. Scalar product detailled with operations and fixed-point for-
mat

βZ (the coefficients wordlengths), βu, βy , βt, βx (the inputs,
outputs, intermediate variables and states coefficients wordlengths)
and βADD (the accumulator operators wordlength) are supposed to
be known. γu is also known (or deduced by γu = βu − 1 −⌊
log2

max
u
⌋

). It is also supposed that the accumulations (in each
scalar product, see figure 3) are done on the same fixed-point format
(no shift between two consecutive additions).

Then, the binary-point positions γt, γx, γy are deduced. This
could be done with the L1-norm of the transfer function from the
intermediate variables, the state and the output to the output (that
can also be expressed from Z). The L2-norm can also be used (less
conservative than the L1-one), but cannot guaranty the overflows.

Afterwards, the common fixed-point format of each accumulator
γADD can be set in order to represent the dynamic of each product
without overflow and the final result without overflow.

Finally, in order to align the results of the products, two compu-
tational schemes are possibles:

• Roundoff After Multiplication: the result of the product is

truncation best roundoff
µe 2−γ−1(1− 2−d) 2−γ−d−1

σ2
e

2−2γ

12
(1− 2−2d) 2−2γ

12
(1− 2−2d)

Table 1. Right shift of d bits the signal with (β + d, γ + d) as
representation is similar to add a white independent noise e with µe
and σ2

e as first and second-order moments [6, 20].

right shifted so as to meet the accumulator’s fixed-point for-
mat (as shown in figure 3)

• Roundoff Before Multiplication: the required quantization is
moved to the coefficient. In that case, no extra right shifts are
required for the scalar product computations, but the coeffi-
cients can be represented with less significant bits that they
can be. The roundoff noise is changed as a parametric error
(see sections 4.2.1 and 4.2.2).

4.4. A posteriori measures

Determining the representation (β, γ) of everything in the computa-
tions allows to know which quantizations are performed (right shift
operators) and then the first and second moment order of each ele-
ment of ξ(k), according to the table 1.

So the first and second-order moments of the noises ξ(k) can be
deduced, and the roundoff noise power σξ† can be computed with
[20]

σ2
ξ† = ‖φξHξ‖22 (17)

where φξ satisfies ψξ = φξφ
>
ξ and ψξ is the covariance matrix of

ξ.
It is also possible to use the norms

∥∥h− h†∥∥
2

and
∥∥|λ| − ∣∣λ†∣∣∥∥

F

where h† and λ† denote the transfer function and the poles with
quantized coefficients respectively. But these measures are highly
non-smooth, non analytical and cannot be used in the optimization
steps.

Finally, hardware measures like area can be built. Basically, they
depends linearly from the number of involved additions and quadrat-
ically for the multiplications.

5. METHODOLOGY

The different tools proposed on the Specialized Implicit Framework
allow us to design a complete methodology taking in consideration
the equivalent realizations and the Software/Hardware possibilities.
It is represented on figure 4, with the following steps:

a) Choose a structure (from the existing ones, such state-space, δ-
state-space, ρDFIIt, ρ-modal, cascade decomposition where each
sub-filter can be in any structure, etc.) ;

b) Use the SIF formalization and obtain the set of equivalent struc-
tured realizations (mainly a realization Z0, plus additive con-
straints on transformation matrices U , W and Y) ;

c) a priori measures are used for the optimization of the realization,
with a gradient or a global optimization algorithm (like Adap-
tive Simulated Annealing [21]). Classical multi-objectives tech-
niques can be used, such as defining a weighted criteria J by

J ,
ML2

Mopt
L2

+
Ψ

Ψopt
+

RNG

RNGopt
(18)

structure

transfer function

set of equivalent
realizations

realization

a priori measure

wordlength

optimal
implementation

fixed-point
implementation

optimal
realization

SIFStructure
catalog

language

code

code
generation

a) b)

c)

d)

e)

f)

fixed-point realization

Fig. 4. Methodology based on a unifying approach

where Mopt
L2

, Ψopt, RNGopt are optimal value for the ML2 , Ψ
and RNG measures, respectively (this requires three extra steps
of single objective optimization) ;

d) According to the wordlength, the fixed-point implementation is
determied ;

e) If the hardware architecture allows multiple wordlength paradigm
(FPGA, ASIC, ...), then optimal implementation is obtain by
optimizing an a posteriori criteria (typically area or wordlength-
related measure) under precision constraints given by an a priori
criteria ;

f) Finally, automatic code generation can be performed, in various
languages (VHDL, C, Matlab, ...).

This methodology, based on formal representation and analyti-
cal criteria, is an important step to deal with the optimal implemen-
tation problem. Methods for points c) and d) are not developed in
details here due to lack of space, although tractable with classic op-
timization methods. More specific optimization algorithms should
be now developed and compared for that specific problem.

6. EXAMPLE WITH THE FWR TOOLBOX

A Matlab open-source toolbox, called Finite Wordlength Realiza-
tion Toolbox (FWR Toolbox) have been released, based on the SIF
and the unifying approach5. It is yet able to deal with most of the
methodology and the mentioned measures, even if it is still in devel-
opment. It is based on tow classes (FWR and FWS) that can represent
realizations and structurations, with methods to compute a priori/a
posteriori measures, perform optimization and export code.

Let us consider the filter obtained by the Matlab command
butter(4,0.125). Due to lack of space, it is not possible here

5It is freely available at http://fwrtoolbox.gforge.inria.fr

to detail every steps, but only the result for the ρ-DFIIt structure
(proposed in [13] and described with the SIF in [18]). This structure
has n free parameters denoted γ that are here used for the optimiza-
tion of tradeoff measure J . The optimization step c) with criterion
J gives γ =

(
0.24998 0.80129 0.72471 0.70086

)>. The
optimized realization is then implemented in 16 bits (32 bits for
the accumulation), with a Roundoff After Multiplication scheme, as
shown in algorithm 1. It involves 11 multiplications and 12 additions
(plus extra shifts), and proposes low transfer function sensitivity, low
pole sensitivity and low roundoff noise gain.

7. CONCLUSION

This paper deals with the optimal implementation problem of linear
filters. After having formalized the problem, we have proposed a
unifying approach for the description of the equivalent realizations
and the different FWL measures to use. Some are applied on the
realization level, whereas some consider the implementation level.
A first methodology, combining two optimization steps, is proposed.
Our current work is now focused on ad hoc constrained optimiza-
tion algorithms and new specific structures. The development of the
FWR Toolbox will be continued, so as to propose a graphical tool
able to apply the proposed methodology and generate optimal fixed-
point implementations.

8. REFERENCES

[1] M. Gevers and G. Li, Parametrizations in Control, Estimation
and Filtering Probems, Springer-Verlag, 1993.

[2] R. Istepanian and J.F. Whidborne, Eds., Digital Controller im-
plementation and fragility, Springer, 2001.

[3] Gang Li, “On pole and zero sensitivity of linear systems,” Cir-
cuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on, vol. 44, no. 7, pp. 583 –590, jul 1997.

[4] J.F. Whidborne, J. Wu, and R.H. Istepanian, “Finite word
length stability issues in an `1 framework,” Int. J. Control,
vol. 73, no. 2, pp. 166–176, 2000.

[5] J. Wu, S. Chen, G. Li, R. Istepanian, and J. Chu, “An improved
closed-loop stability related measure for finite-precision digital
controller realizations,” IEEE Trans. Automatic Control, vol.
46, no. 7, pp. 1162–1166, 2001.

[6] B. Widrow and I. Kollár, Quantization Noise: Roundoff Error
in Digital Computation, Signal Processing, Control, and Com-
munications, Cambridge University Press, Cambridge, UK,
2008.

[7] G. Constantinides, P. Cheung, and W. Luk, “Truncation Noise
in Fixed-Point SFGs,” IEE Electronics Letters, vol. 35, no. 23,
pp. 2012–2014, November 1999.

[8] D. Ménard and O. Sentieys, “Automatic evaluation of the ac-
curacy of fixed-point algorithms,” in Proceedings of DATE02
(Design Automation and Test in Europe), march 2002.

[9] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE : A
fixed-point design and simulation environment,” EDAA, 1998.

[10] S. Kim, KI. Kum, and W. Sung, “Fixed-point optimization util-
ity for C and C++ based digital signal processing programs,”
IEEE Transactions on Circuits and Systems, vol. 45, no. 11,
pp. 1455–1464, November 1998.

[11] R. Rocher, D. Menard, O. Sentieys, and P. Scalart, “Analytical
accuracy evaluation of fixed-point systems,” in Proc. European
Signal Processing Conference (EUSIPCO’07), 2007.

[12] R. Middleton and G. Goodwin, Digital Control and Estima-
tion, a unified approach, Prentice-Hall International Editions,
1990.

[13] G. Li and Z. Zhao, “On the generalized DFIIt structure and its
state-space realization in digital filter implementation,” IEEE
Trans. on Circuits and Systems, vol. 51, no. 4, pp. 769–778,
April 2004.

[14] Y. Feng, P. Chevrel, and T. Hilaire, “A practival strategy of
an efficient and sparse FWL implementation of lti filters,” in
European Control Conference (ECC’09), 2009.

[15] G. Li, J. Chu, and J. Wu, “A matrix factorization-based struc-
ture for digital filters,” Signal Processing, IEEE Transactions
on, vol. 55, no. 10, pp. 5108–5112, October 2007.

[16] J. Wu, S. Chen, G. Li, and J. Chu, “Constructing sparse real-
izations of finite-precision digital controllers based on a closed-
loop stability related measure,” IEE Proc. Control Theory and
Applications, vol. 150, no. 1, pp. 61–68, January 2003.

[17] T. Hilaire, P. Chevrel, and J.F. Whidborne, “A unifying frame-
work for finite wordlength realizations,” IEEE Trans. on Cir-
cuits and Systems, vol. 8, no. 54, pp. 1765–1774, August 2007.

[18] T. Hilaire, P. Chevrel, and J.F. Whidborne, “Finite wordlength
controller realizations using the specialized implicit form,” Int.
Journal of Control, vol. 83, no. 2, pp. 330–346, February 2010.

[19] C. Mullis and R. Roberts, “Synthesis of minimum roundoff
noise fixed point digital filters,” in IEEE Transactions on Cir-
cuits and Systems, September 1976, vol. CAS-23.

[20] T. Hilaire, D. Ménard, and O. Sentieys, “Bit accurate roundoff
noise analysis of fixed-point linear controllers,” in Proc. IEEE
Int. Symposium on Computer-Aided Control System Design
(CACSD’08), September 2008.

[21] L. Ingber, “Adaptive simulated annealing (ASA): Lessons
learned,” Control and Cybernetics, vol. 25, pp. 33–54, 1996.

[22] Kyungtae Han and Brian L. Evans, “Optimum wordlength
search using sensitivity information,” EURASIP J. Appl. Signal
Process., vol. 2006, pp. 76, uary.

Input: u: 16 bits integer
Output: y: 16 bits integer
Data: xn: array [1..5] of 16 bits integers
Data: T : 16 bits integers
Data: Acc: 32 bits integer
begin

// Intermediate variables
Acc ← xn(1) << 14;
Acc ← Acc + (u ∗ 31323) >> 11;
T ← Acc >> 14;
// States
Acc ← T << 14;
Acc ← Acc + xn(2) << 14;
Acc ← Acc + (xn(1) ∗ 32766) >> 2;
Acc ← Acc + (u ∗ 25359) >> 7;
xn(1) ← Acc >> 15;
Acc ← (T ∗ −26735) >> 2;
Acc ← Acc + xn(3) << 13;
Acc ← Acc + (xn(2) ∗ 26257);
Acc ← Acc + (u ∗ 17831) >> 4;
xn(2) ← Acc >> 15;
Acc ← (T ∗ −32768) >> 5;
Acc ← Acc + xn(4) << 13;
Acc ← Acc + (xn(3) ∗ 23747);
Acc ← Acc + (u ∗ 19675) >> 2;
xn(3) ← Acc >> 15;
Acc ← (T ∗ −21440) >> 4;
Acc ← Acc + (xn(4) ∗ 22966);
Acc ← Acc + u << 13;
xn(4) ← Acc >> 15;
// Outputs
y ← T1 ;

end

Algorithm 1: optimal 16-bit ρDFIIt

