Interval-based Robustness of Linear Parametrized Filters

Alexandre Chapoutot and Thibault Hilaire and Philippe Chevrel

ENSTA ParisTech - 32 bd Victor, 75739 Paris Cedex 15, France LIP6 - 4, place Jussieu, 75252 Paris Cedex 05, France IRCCyN - 1, rue de la Noë, BP 92 101, 44321 Nantes Cedex 3, France alexandre.chapoutot@ensta-paristech.fr thibault.hilaire@lip6.fr philippe.chevrel@mines-nantes.fr

Keywords: linear filters, interval arithmetic, sensitivity analysis

Introduction. This article deals with the resilient implementation of parametrized linear filters (or controllers), *i.e.* with realizations that are robust with respect to their fixed-point implementation.

The implementation of a linear filter/controller in an embedded device is a difficult task due to numerical deteriorations in performances and characteristics. These degradations come from the quantization of the embedded coefficients and the roundoff occurring during the computations.

As mentioned in [1], there are an infinity of equivalent possible algorithms to implement a given transfer function h. To cite a few of them, one can use direct forms, state-space realizations, ρ -realizations, etc. Although they do not require the same amount of computation, all these realizations are equivalent in infinite precision, but they are no more in finite precision. The *optimal realization problem* is then to find, for a given filter, the most resilient realization.

We here consider an extended problem with filters those coefficients depend on a set θ of parameters that are not exactly known during the design. They are used for example in automotive control, where a very late fine tuning is required.

Linear parametrized filters. Following [3], we denote $Z(\theta)$ the matrix containing all the coefficients used by the realization, $h_{Z(\theta)}$ the associated transfer function and θ^{\dagger} the quantized version of θ . $Z^{\dagger}(\theta^{\dagger})$ is then the set of the quantized coefficients, *i.e.* the quantization of coefficients $Z(\theta^{\dagger})$ computed from the quantized parameters θ^{\dagger} . The corresponding transfer function is denoted $h_{Z^{\dagger}(\theta^{\dagger})}$.

1

Performance Degradation Analysis. The two main objectives of this article are to evaluate the impact of the quantization of θ and $Z(\theta)$ on the filter performance and to estimate the parameters θ that give the worst transfer function error in the set of possible parameters Θ .

For that purpose, there are mainly two kinds of tools to study the degradation of filter performance due to the quantization effect: i) use a sensitivity measure (with respect to the coefficients) based on a first order approximation and a statistical quantification error model; ii) use interval tool, based on transfer function with interval coefficients. In both cases, we seek the maximal distance between the exact transfer function $h_{Z(\theta)}$ and the quantized one $h_{Z^{\dagger}(\theta^{\dagger})}$. For that purpose, we can use the L_2 -norm i.e., $||g||_2 \triangleq \sqrt{\frac{1}{2\pi} \int_0^{2\pi} |g(e^{j\omega})|^2 d\omega}$ or the

that purpose, we can use the L_2 -norm *i.e.*, $||g||_2 \triangleq \sqrt{\frac{1}{2\pi} \int_0^{2\pi} |g(e^{j\omega})|^2 d\omega}$ or the Maximum norm *i.e.*, $||g||_{\infty} \triangleq \max_{\omega \in [0,2\pi]} |g(e^{j\omega})|$. The measure of the degradation of the finite precision implementation is then

The measure of the degradation of the finite precision implementation is then given by $\| h_{\mathbf{Z}(\theta)} - h_{\mathbf{Z}^{\dagger}(\theta^{\dagger})} \|_{\diamond}$, with $\diamond \in \{2, \infty\}$. So the worst-case parameters θ_0 can be found by solving:

$$\arg\max_{\boldsymbol{\theta}\in\boldsymbol{\Theta}} \parallel h_{\boldsymbol{Z}(\boldsymbol{\theta})} - h_{\boldsymbol{Z}^{\dagger}(\boldsymbol{\theta}^{\dagger})} \parallel_{\diamond} \quad . \tag{1}$$

Since Θ is an interval vector, we denote [h] the interval transfer function. With an interval approach, we can define the following constrained global optimization problem:

Maximize
$$\| [h]^{\dagger}_{\mathbf{Z}^{\dagger}(\boldsymbol{\theta}^{\dagger})} - [h]_{\mathbf{Z}(\boldsymbol{\theta})} \|_{\diamond}$$
 subject to $\boldsymbol{\theta} \in \boldsymbol{\Theta}$. (2)

Note that in both cases, the evaluation of the norms can be done in interval with $\omega \in [0, 2\pi]$.

We will present the solutions of this problem using interval optimization methods [2] and we will compare them with the statistical sensitivity approach.

References:

- H. Hanselmann. Implementation of digital controllers a survey. Automatica, 23(1):7–32, January 1987.
- [2] E.R. Hansen and G.W. Walster. Global Optimization Using Interval Analysis. Pure and Applied Mathematics. Marcel Dekker, 2004.
- [3] T. Hilaire, P. Chevrel, and J.F. Whidborne. A unifying framework for finite wordlength realizations. *IEEE Trans. on Circuits and Systems*, 8(54):1765– 1774, August 2007.

$\mathbf{2}$