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Abstract—In this paper we propose to perform a complete error
analysis of a fixed-point implementation of any linear system described
by data-flow graph. The system is translated to a matrix-based internal
representation that is used to determine the analytical errors-to-output
relationship. The error induced by the finite precision arithmetic (for each
sum-of-product) of the implementation propagates through the system
and perturbs the output.
The output error is then analysed with three different point of view:
classical statistical approach (errors modeled as noises), worst-case
approach (errors modeled as intervals) and probability density function.
These three approaches allow determining the output error due to the
finite precision with respect to its probability to occur and give the
designer a complete output error analysis. Finally, our methodology is
illustrated with numerical examples.

I. INTRODUCTION

Nowadays embedded devices are used every day everywhere by
everyone. The progress in microelectronic allows to integrate more
and more applications and services in embedded platforms, and
Signal Processing is a low level brick required. Signal processing
application use blocks made-up of linear digital systems.
The context of our work is the implementation of these systems
(Linear Time Invariant filters, described by their transfer function
or by a data-flow graph) for signal processing, control, robotic,
etc.. The implementation of filters on low-resource devices such as
Digital Signal Processors (DSPs) or Field-Programmable Gate Arrays
(FPGAs) typically relies on finite precision arithmetic, such as fixed-
point arithmetic and thus results in an inherent limitation on the
accuracy of the output.

Unfortunately, there is no general tool to automatize and analyze
the transformations required to obtain the final code from the filter or
controller (as mathematical object). This final code may be executed
on a device (software implementation) or it can be translated to some
hardware description language. This problem is a difficult one, that
is usually composed of several steps.
First, one should be able to deal with the various equivalent al-
gorithms to implement the filter. In addition to the classical direct
forms or the state-space, some other interesting realizations can be
considered, like the Lattice Wave Digital Filters [1], [2], the ρ-Direct
Form II transposed (ρDFIIt) [3], warped filters, and a lot of other
specific realizations (LGC, LCW-structures, etc.). The choice of the
structure has a large impact on the trade-off cost-accuracy.
Then, a fixed-point algorithm (to be executed on a processor, or to
be transformed into a hardware operator) is deduced, and an accurate
and meaningful error analysis must be performed.
Finally, this code is mapped to a given processor (or some hardware
operators are combined) to produce final implementation.

In this article, we investigate different tools and approaches to
perform the error analysis of any linear systems, since the two
classical approaches (statistical and worst-case approaches) are not
sufficient to embrace the complexity of the output error. The two main
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contributions of the paper are the comparison of these two approaches
and the determination of the probability density function.
We do not consider here the impact of the quantization of the
coefficients, but the reader my refer to [4] and [5] for more details.

The paper is organized as follows. Section II recalls the prerequi-
sites concerning the linear systems and data-flow graphs, our internal
matrix-based representation and Fixed-Point arithmetic. Section III
explores the fixed-point errors due to the quantization operator and
their impact to the output by exhibiting the analytical relationship
between the errors and the outputs. Section IV focuses on the
error propagation using three complementary approaches: statistical
approach considering the mean and variance of the errors modeled as
noises, worst-case approach where errors are considered as intervals
and finally probability density function, that we determine using
convolution algorithms. Finally, we illustrate these approaches with
two illustrated in section V before conclusion.

Notation: throughout the article matrices are in uppercase bold-
face, vectors are in lowercase boldface, scalars are in lowercase. The
n × n identity matrix is denoted In, M> is the transposed of M
and 1n is a n× 1 vector full of ones.

II. PREREQUISITES

A. Linear systems and Data-flow graphs

In this article, we only consider Linear Time Invariant (LTI) sys-
tems, like the IIR (Infinite Impulse Response) and FIR (Finite Impulse
Response) filters, linear controllers and other linear transforms (FFT,
DCT, etc.). They can be described with an input-to-output data-flow
graph that only uses the sum operator (additions or subtractions), the
constant multiplication and the delay operator (Fig. 1). Or they can be
described by appropriate equations (in time or in frequency domain).
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Fig. 1. Linear data-flow graph blocks.

Fig. 2 shows an example of a Lattice Wave Digital Filter [1],
[2] expressed as an input-output data-flow graph, using only 4
multiplication-by-constants and some sums and delays.
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Fig. 2. Lattice Wave Digital Filter data-flow.
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B. Specialized Implicit Framework

Though data-flow graph is an appropriate description of the system,
we prefer using a matrix-based input-output relationship. In [6], the
Specialized Implicit Framework (SIF) has been developed to describe
all the possible LTI algorithms in one matrix-based equation.
It has been proposed in order to describe all the possible realizations
of a given transfer function (like the direct forms, state-spaces,
cascade or parallel decompositions, lattice filters, etc.). It also allows
the study and comparison of their finite precision effects. SIF is an
extension of the state-space realization, modified in order to express
chained Sum-of-Products (SoP) operations.

In fact, all linear data-flows can be represented with the SIF, and
the conversion algorithm has been presented in [7]. This macroscopic
description is more suited for the analysis than a data-flow graph as it
gives direct analytical formula for the finite precision error analysis,
as shown in section III. Both the Single Input Single Output (SISO)
and the Multiple-Inputs Multiple Outputs (MIMO) systems can be
described with SIF.

Denote k the time (discrete time according to a given sampling
period), u(k) and y(k) the vector of q inputs and the vector of p
outputs respectively. The n variables that are stored from one step to
the other are in the state vector x(k), while the l intermediate results
are collected in the vector t(k). Then, a system H can be described
with the SIF thanks to the following set of equations:

H


Jt(k + 1) = Mx(k) +Nu(k)
x(k + 1) = Kt(k + 1) + Px(k) +Qu(k)

y(k) = Lt(k + 1) +Rx(k) + Su(k)
(1)

The vector t(k+1) is not used for computations at step k, which
characterizes the concept of intermediate variables. The vector t(k+
1) is similar to the state vector, except those values are not stored from
one step to another, which characterizes the concept of intermediate
variables. That vector is denoted t(k + 1) (instead of t(k) although
it serves at step k) in order to be consistent with implicit state-space
theory [8].

The matrix J is lower-triangular with 1 on its diagonal, so the
first value of t(k + 1) is first computed, then the second one is
computed using the first and so on (thus, the computation of J−1

is not necessary)). The implicit term Jt(k + 1) naturally serves for
describing the specific order of the computation.

The matrices J , K and L allow us to describe the sequence of
computations. For example, y = M2M1x can be computed as
y = (M2M1)x or as y =M2(M1x). The latter expression will
be described as (

I 0
−M2 I

)(
t
y

)
=

(
M1

0

)
x, (2)

with t holding the intermediate value M1x.
Therefore, transforming a linear data-flow to the SIF formalism

corresponds to a description of the computations within the flow in
terms of intermediate variables and states while preserving the order
of operations [7].

Throughout the paper we consider that the computations associated
to (1) are ordered from top to bottom, associated in a one to
one manner to the Algorithm 1, where the null multiplications are
removed, and trivial parameters (±2p, p ∈ Z) do not involve any
multiplication.

It can be easily established that (1) is equivalent in infinite precision
to the state-space filter (A,B,C,D):{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

(3)

Algorithm 1: General algorithm associated to the SIF.
Input: Signal u(k)
Output: Signal y(k)
begin

foreach k do
for i in 1. . . l do /*Intermediate variables*/

ti ←
n∑
j=1

M ijxj(k) +
q∑
j=1

N ijuj(k)−
i−1∑
j=1

Jijtj

end
for i in 1. . .n do /*State-vector update*/

xi(k + 1)←
l∑

j=1
Kijtj +

n∑
j=1

P ijxj(k) +
q∑
j=1

Qijuj(k)

end
for i in 1. . .p do /*Computation of the outputs*/

yi(k)←
l∑

j=1
Lijtj +

n∑
j=1

Rijxj(k) +
q∑
j=1

Sijuj(k)

end
end

end

with:

A = KJ−1M + P , B = KJ−1N +Q,
C = LJ−1M +R, D = LJ−1N + S.

(4)

So this system ((1) or (3)) has the following transfer function:

H(z) = C(zIn −A)−1B +D, ∀z ∈ C. (5)

However, (3) corresponds to a different set of coefficients than
the one in (1). Therefore, while in infinite precision (1) and (3) are
equivalent, in finite precision they have different numerical properties.
Thus, the SIF not only describes the input/output relationship but also
fully captures properties of computational algorithm.

The main interest of such a framework is that it allows expressing
various algorithms for the computation of the same filter in a unifying
form, in order to study and compare the effects of the finite precision
arithmetic on them, and then to choose the best Fixed-Point algorithm
to implement this filter. All the classical measures used to evaluate
the impact of the quantization of the coefficients (sensitivity-based
measure like in [4], [5]) and the impact of the roundoff errors ([4],
[9], [10], [11]) have been extended to the SIF [6], [12].

C. Fixed-Point Arithmetic

In this paper, only the signed fixed-point arithmetic with 2’s
complement representation is used. Let z be a w-bit fixed-point
number:

z = −2mzm +

m−1∑
i=`

2izi (6)

where m and ` are the positions of the most significant bit (MSB) and
the least significant bit (LSB) of z, respectively. Let the couple (m, `)
denote the Fixed-Point format of z (see Fig. 3). The word-length w
can be obtained with:

w = m− `+ 1, (7)

m+ 1 −`
w

s

−2m 20 2−12m−1 2`

Fig. 3. Representation of a fixed-point number. Here m = 5 and ` = −4.

The w bits manipulated when using that number can be seen as a
2’s complement integer (equal to z2`), since the scaling factor 2` is
implicit, and only known by people interpreting those w bits.
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Rounding mode round-to-nearest Range

Truncation 7 [0, 2`[
Round half up 3 [−2`−1, 2`−1[
Round to nearest even 3 [−2`−1, 2`−1]
Von Neumann [16] 7 ]− 2`, 2`[
Round toward +∞ 7 ]− 2`, 0]

Magnitude truncation 7

{
[0, 2`[ ∀x > 0

]− 2`, 0] ∀x < 0

Round to nearest, ties to 0 3 [−2`−1, 2`−1]
Round half down 3 ]− 2`−1, 2`−1]
Round to nearest, ties away 3 [−2`−1, 2`−1]

TABLE I
INTERVAL OF ERRORS FOR DIFFERENT ROUNDING MODES (` IS THE

REMAINING LSB POSITION).

III. ERROR ANALYSIS

A. Quantization errors

After some arithmetic operations (addition or multiplication), the
Fixed-Point Format must be changed and the LSB position reduced.
This is called a quantization (or rounding), and several ways to do
it exist. The simpliest is the truncation and corresponds to simply
dropping the extra least significant bits. Some other methods exist,
involving more complex operation (mainly a 1-bit addition, see [13]).

x(k) Q[ ] x′(k) ≡ x(k) +

ε(k)

x∗(k)

Fig. 4. Quantization is equivalent to adding an roundoff error term.

A quantization can be modeled as the addition of an extra term,
called roundoff error, as shown on Fig. 4. Depending on the quanti-
zation mode, the range of this error varies as shown in Table I.
These modes are described in the IEE-1666 standard [14] or are
equivalent to those described in the floating-point IEEE-754 stan-
dard [15]. Round half up, round half down, round to nearest ties
away, round to nearest ties to 0 and round to nearest even are five
round-to-nearest modes, where the only difference resides in the way
the tie-break cases are treated (when the number to round is exactly
in the middle of two rounded numbers).
Von Neumann’s quantization mode is performed by forcing the value
of the LSB to 1 if at least one of the deleted bit is 1 [16]. This
rounding mode provides a larger error, but is cheap to implement
and leads to a symmetric error, contrary to the truncation mode.

B. Error analysis with feedback

At each step k, the evaluation of the intermediate variables, states
and outputs (see Algorithm 1) is composed of sum-of-products
(SoP), one per intermediate variable, state and output. Since they are
not performed in exact arithmetic, each SoP may include an error,
compared to the exact SoP. So (1) is changed to

Jt∗(k+1)←Mx∗(k) +Nu(k) +εt(k)
x∗(k+1)←Kt∗(k+1) + Px∗(k) +Qu(k)+εx(k)
y∗(k)←Lt∗(k+1) +Rx∗(k) + Su(k) +εy(k)

(8)

where εt(k), εx(k) and εy(k) are the vectors of roundoff errors due
to the sum-of-products evaluation. Denote ε(k) the column vector
that aggregates those error vectors:

ε(k) ,

εt(k)εx(k)
εy(k)

 ∈ Rl+n+p. (9)

In order to capture the effects of the FxP implementation we must
take into account the propagation of the roundoff errors through

the data-flow. The output error ∆y(k) is defined as the difference
between the implemented and the exact systems:

∆y(k) , y∗(k)− y(k), ∀k (10)

This difference system can be obtained by subtracting (1) to (8). It
follows that ∆y(k) can be seen as the output of the error vector
ε(k) through the filter Hε with (A,M1,C,M2) as state-space:

M1 ,
(
KJ−1 In 0

)
, M2 ,

(
LJ−1 0 Ip

)
. (11)

Equivalently (thanks to the linearity of the considered system), the
implemented system can be seen as the sum of the exact system H
and the error system Hε with ε(k) as input, as shown on Figure 5.

H

Hε

u(k)

ε(k)

+

y(k)

∆y(k)

y∗(k)

Fig. 5. Equivalent system, with errors separated.

The system Hε expresses how the error propagates through the
filter, and knowing some properties on the roundoff errors ε(k) will
lead to properties on the output error ∆y(k), and hence on the
accuracy of the implemented algorithm.

C. Finite precision sum-of-products

As already seen, the Fixed-Point arithmetic basic bricks involved
here are the evaluation of some sum-of-products, i.e. sums of vari-
ables multiplied by constant coefficients. Let us consider here one
sum-of-product (SoP):

s =

N∑
i=1

ci · vi =
N∑
i=1

pi, (12)

where pi denotes the product ci ·vi of the constants ci and variables
vi for 1 6 i 6 N .

In our context, the MSB positions of the variables are known
(deduced from the magnitude of the variables [17], [18]) and the
MSB of the constants are deduced from their value (applying log2
upon them). In the SIF the sum-of-product results are stored either
in the intermediate, state or output variables, so their MSBs are also
known. Thus, it is easy to deduce the FxP format of the accumulation
in order to guarantee a roundoff error less than a given bound.

Denote (ms, `s) the required FxP format for the result. As shown
in [12], to perform the multiplication and accumulation with the
format (ms, `s − g) with

g = dlog2Ne, (13)

and then discard those extra guard bits guaranties that the computa-
tion performs a faithful rounding on the exact result, i.e. the roundoff
error is bounded by the weight of the LSB of the result, i.e. 2`s . Fig. 6
details graphically this operation.

Of course, many other computing schemes are possible (with
different rounding modes, using more or less complicated operations),
leading to different bounds for the sum-of-product error.

IV. PROPAGATION OF ERRORS THROUGH A FILTER

The error analysis is based on the decomposition performed in
section III-B. The output error ∆y depends on the Fixed-Point errors
done during the Sum-of-Products evaluation.
Classically, the errors are modeled as noises, and the statistical prop-
erties of the final output error are deduced. Otherwise, errors can be
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ms `s

Fig. 6. The sum is first performed with FxP format (ms, `s − g), and then
the g guard bits are discarded.

modeled with intervals, and the Worst-Case Peak-Gain theorem [19]
is used to deduce the output error interval.

We denote |Hε|DC the DC-gain of the system Hε, i.e. the gain
of the system for frequency ω = 0, and obtained by

|Hε|DC = C(In −A)−1M1 +M2. (14)

We also denote hε(k) ∈ Rp×q the impulse response matrix of Hε,
i.e. {(hε)ij(k)}k>0 is the response on the ith output to an impulse
on the j th input. We have

hε(k) =

{
M2 if k = 0

CAk−1M1 if k > 0
. (15)

A. Roundoff noise

In roundoff noise context, the roundoff errors are considered as
noises that are additive, white and uncorrelated with the signal being
quantized. It has been shown that this assumption is realistic and
almost true if the number of removed bits is reasonable with respect
to the total word-length [9], [20].

Let us denote (µ) and (Ψ) the first and second order moments of
the noise ε(k) , respectively:

µε , E {ε(k)} ∈ R(l+n+p)×1 (16)

Ψε , E
{
(ε(k)− µε) (ε(k)− µε)>

}
∈ R(l+n+p)×(l+n+p)

σ2
ε , E

{
(ε(k)− µε)> (ε(k)− µε)

}
= tr(Ψε) ∈ R, (17)

where E{.} is the expectation operator (over time), and tr(.) the
trace operator.

Lemma 1 (Noise through a filter) We consider the noise ε(k) to
be stationary white noise such that ε(k) and ε(l) are not correlated
for k 6= l and independent (Ψε is diagonal).
Then, the output ∆y(k) through Hε has the following properties:

µ∆y = |Hε|DC µε, σ2
∆y = ‖HεΦε‖22 (18)

where ‖.‖2 the `2-norm and Φε the (l + n + p) × (l + n + p)
diagonal matrix such that (Φε)ii =

√
(Ψε)ii.

The `2-norm ‖HεΦε‖2 can be obtained from the observability
Gramian Wo of Hε:

σ2
t = tr

(
Ψε(M

>
2 M2 +M

>
1 WoM1)

)
(19)

whereWo is the solution of the Lyapunov equationWo = A
>WoA+

C>C, or equivalently Wo =
∑∞
k=OA

>kC>CAk.

Proof: The output error ∆y(k) can be obtained from the error
{ε(l)}06l6k and the impulse response hε(k) of Hε with

∆y(k) =
k∑
l=0

hε(l)ε(k − l). (20)

This last equation is used to compute µ∆y and σ2
δy from (16) and

(17) using DC-gain and `2-norm classical definitions and properties.

Usually, the Signal-to-Noise Ratio (SNR) is used to determine the
roundoff noise impact. It is defined as the ratio of the output signal
power to output error power: SQNR ,

σ
y2

σ2
∆y

.

B. Roundoff error

A more Computer Arithmetic approach would be to modeling
errors with intervals. Now, we consider the interval to which ε and
∆y belong. Usually, the lower and upper bound of the roundoff
error are considered, as in Table I. But in the following, intervals
are represented in mid-rad representation 〈xm, xr〉 where xm is the
center of the interval, and xr its radius.

Lemma 2 (Worst-Case Peak Gain theorem) Suppose that for all
k, ε(k) is (element-by-element) in the interval 〈εm, εr〉, then, for
any δ > 0, it exists K > 0 such that ∀k > K, ∆y(k) is (element-
by-element) in the interval 〈∆ym,∆yr〉 with:

∆ym = |Hε|DC εm, ∆yr = 〈〈Hε〉〉 εr + δ1 (21)

where 〈〈Hε〉〉 is the Worst-Case Peak-Gain (WCPG) matrix[19] of
the system Hε, classically computed with the `1-norm of the impulse
response hε:

〈〈Hε〉〉 ,
∞∑
k=0

|hε(k)| = |M2|+
∞∑
k=0

∣∣∣CAkM1

∣∣∣ . (22)

In [21] an efficient algorithm to evaluate it at arbitrary accuracy
was proposed.
This lemma means that, except of the first terms, the output error
∆y(k) is, in the steady state, in the interval 〈|Hε|DC εm; 〈〈Hε〉〉 εr〉
(with an error δ).

Proof: Equation (20) gives ∆ym =
∑∞
k=0 hε(k)εm and (14)

is used. For ∆yr , the idea is to consider ε(k) as εr + ε′(k) with
|ε′| 6 εm, and use (20) to bound |∆y(k)−∆ym|.

C. Comparison between roundoff noise and roundoff errors

It is interesting to note that the two lemmas are quite similar in
the sense that the mean µε and the middle εm of the input ε are
multiplied by the DC-gain |Hε|DC , whereas the 2nd order moment
and the radius are both multiplied by a norm of the system Hε (`2-
norm and WCPG). Note that the `2-norm of the system is also the
`2-norm of its impulse response (Parseval’s theorem). So Lemma 1
(`2-norm of hε) gives the amplification of the variance of the roundoff
errors when they propagate in the filter, while Lemma 2 (`1-norm)
gives how their magnitude are amplified in the worst cases.

D. Probability Density Function

These two pieces of information, worst-case range and statistical
moments of the output error, are precious results to characterize the
overall error and to determine if its level is acceptable or not. How-
ever, worst cases may be or may not be really representative of real
life output error, whereas SQNR is by definition more representative,
but gives no usable information about the error magnitude.

A more interesting information would be the probability density
function (pdf) or the cumulative distribution. It could let the designer
determines for which probability the output error level is considered
as representative [22]. Depending on the application, the worst cases,
even extremely rare, is a must have, whereas only output error with
reasonable probability will be considered for some other applications.
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This has already been studied using Karhunen-Loève expansion [23],
[24], but this rather complicated method has approximation (number
of terms in the expansion, etc.) for which we do not know how to
bound the associated error.

Remark that the signal to be quantized is already discrete, so
are the quantization errors ε(k) and one should rather consider
probability mass (pmf) function (also called discrete probability
density function).

Assuming the roundoff errors are independent and uniformly
distributed in their range (see Table I), we want to compute the
probability mass distribution of the output error. From (20):

∆y(k) =

k∑
l=0

l+n+p∑
i=1

(hε)i(l)εi(k − l) (23)

so ∆y(k) is the sum of (l + m + p)(k + 1) weighted discrete
uncorrelated random variables.

Lemma 3 Let X and Y be two uncorrelated discrete random
variables, with pdf fX and fY . If Z = αX + βY , then its pdf
fZ is given by the convolution of αfX by βfY , i.e.:

fZ(x) = (αfX ∗ βfY )(x) =
∫ +∞

−∞
αfX(u)βfY (x− u)du. (24)

Denote fεi the discrete pdf of the error εi:

fεi(x) =

{
1

2εi,r
if |x| 6 εi,r

0 elsewhere
. (25)

Then applying Lemma 3 to (23) gives:

∀k, f∆y(k)(x) =
k∗
l=0

(
l+n+p∗
i=1

|(hε)i(l)| fεi(x)

)
(26)

where ∗ is the convolution operator.
In [25], the problem of the distribution of the sum of non-

identically distributed uniform random variables has been covered,
but unfortunately the exact formula of the pdf (and pmf) are not
usable in practice since they require the sum of 2k terms (the pdf
is a piece-wise function, and the number of piece doubles every
convolution per fε). Denote

f∆y(x) = lim
k→∞

f∆y(k)(x) (27)

the final pdf of the output error. Denote ρ(A) is the spectral radius
of A, i.e. the maximum moduli of the poles of the systems H and
Hε. Since |hε(k)| decrease as ρ(A)k when k tends to +∞, (27)
exists and can be approximated by a convolution of finite terms1.

Let ε > 0 be any arbitrary tolerance, we found N such that∑∞
k=N+1 |hε(k)| < ε by performing a pole-residue decomposition

of Hε (or equivalent eigenvalue decomposition of A) such that for
all k, CAkM1 =

∑n
i=1Riλ

k
i , where the λi are the eigenvalues of

A and Ri ∈ Rp×q its associated residue. Then
∞∑

k=N+1

|hε(k)| 6
n∑
i=1

∞∑
k=N+1

|Ri| |λi|k (28)

6
n∑
i=1

|Ri|
|λi|N+1

1− |λi|
6 ρ(A)N+1M (29)

with M ,
∑n
i=1

|Ri|
1−|λi|

|λi|
ρ(A)

∈ Rp×q . Then N must satisfy

N >

⌈
log ε

m

log(ρ(A))

⌉
(30)

1Remark that it is not possible to apply the Central Limit Theorem here,
because

∑∞
k=0 ‖hε(k)‖

2
F converges and thus the Lindeberg condition is not

satisfied [26].

Example 1 Example 2

ρ(A) 0.7387 0.3801
N 42 12
σ2
ε 1.242e-9 1.242e-9
σ2

∆y 8.9605e-10 3.169e-9
∆yr 2.205e-4 5.742e-4
time (s) 228.5 35.1

TABLE II
ROUNDOFF ERROR RANGES AND MOMENTS FOR THE TWO EXAMPLES.

with m = mini,j |M ij |. Using interval arithmetic and Theory of
Verified Inclusions [27], a rigorous evaluation of M and N can
be done [21]. Finally, computing f∆y(N) with such a N is an
approximation of f∆y .

Unfortunately, exact evaluation of f∆y(N) is actually not possible
using [25], [28], [29] when N is over about 25 (due to the 2N terms
involved). For the same reason, it is not possible either to use some
probabilistic programming languages such as Edward2 or PyMC33 to
perform simulation-based pdf evaluation.
But it is possible to use some algorithms dedicated to fast con-
volution (based on Legendre series) like the one implemented in
Chebfun4 [30], and to reduce the complexity of the pdf (number
of pieces) using the simplify and merge methods in Chebfun.

V. EXAMPLES

We start with the data-flow graph of Fig. 2, corresponding to a 3rd

order Butterworth filter with 0.2 as cutoff frequency (the parameters
γ1, γ2 and γ3 of Fig. 2 are set to 0.4905, 0.4543 and 0.1910
respectively). Using [7] a SIF system has been deduced, and so the
error system Hε. Assuming a 16-bit Fixed-Point format (0,−15) (so
the input is in [−1, 1 − 2−15]), and Sum-of-Products with faithful
rounding as in section III-C, the interval of the error vector ε(k) is
deduced (ε is centered). Using Propositions 1 and 2, the output error
range and moments are determined. Table II sums up these properties,
and gives the spectral radius of A and the minimum number of terms
N to consider for the finite convolution of (27) with ε = 10−2.
Using the Chebfun convolution, the following probability density
function for the output error is plot in Figure 7 (Chebfun simplifies it
in 3 subdivisions of 515 pieces). The distribution of the output error
∆y over a simulation of 10,000 uniformly distributed errors εi is
superposed, with the worst-case interval error. We can see that the
pdf determined with (26) matches quite nicely with the simulation.

Fig. 7. Example 1: pdf of the output error ∆y, with histogram from the
simulation.

The second example is a stable 5th order random filter (obtained
using dss Matlab’s function). Its low spectral radius implies to use
few terms (N = 12) to approximate the output error.

The two pdf plotted in Figures 7 and 8 look like Gaussian
distribution (as we can expect) but with finite support, since the pdf

2http://edwardlib.org
3https://github.com/pymc-devs/pymc3
4http://www.chebfun.org
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is null outside of the range ∆yr (plotted with vertical bars). These
two figures, or equivalently the cumulative distribution (not plotted
here due to lack of space) can be used to determine the probability
to have an output error bounded by a certain value.
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Fig. 8. Example 2: pdf of the output error ∆y, with histogram from the
simulation.

VI. CONCLUSION

We gave an overview and comparison of three different approaches
to analyze the output error of a linear system implemented in fixed-
point arithmetic. They are all based on a specific analysis of the
quantization errors that occur at each time step for each sum-of-
product, and the analysis of the propagation of these errors through
an error filter.
Statistical approach gives the level of the output error from a power
point of view, whereas using intervals we focus on worst-case
errors. Being able to approximate and evaluate the probability density
function is a real issue to tackle the complexity of the error analysis.
This approach could also be used with different models of error. For
example, approximate computing and operators leads to an error non
uniformly distributed. This is due to the fact that some errors, with
large amplitude, may sometime appear with a low probability. In such
cases, worst-case and statistical approaches cannot handle completely
the complexity of these rare but large errors.
We should continue our work in order to analyze these fast convolu-
tion algorithms and to understand how we can more easily use them
when we require the number of convolutions to be much larger (up
to 100 or 1000). A comparison with the Karhunen-Loève expansion
should be explored.
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