
A GENERAL FORMALISM FOR THE ANALYSIS OF DISTRIBUTED ALGORITHMS

Ondrej Slučiak, Thibault Hilaire, Markus Rupp

Vienna University of Technology, Austria
Institute of Communications and Radio-Frequency Engineering

{osluciak, thilaire, mrupp}@nt.tuwien.ac.at

ABSTRACT

The major contribution of this paper is the presentation of a general
unifying description of distributed algorithms allowing to map local,
node-based algorithms onto a single global, network-based form. As
a first consequence the new description offers to analyze their learn-
ing and steady-state behavior by classical methods. A further conse-
quence is the analysis of implementation issues as they appear due
to quantization in computing and communication links. Exemplarly
we apply the new method on several different averaging algorithms:
the Push-Sum protocol, Consensus Propagation as well as its quan-
tized form and furthermore examine the effects of quantization noise
which is introduced by the bandwidth limited communication links
and finite precision computation ability of every node. Statistical
properties of these quantization noises are provided and verified by
simulations.

Index Terms — distributed algorithms, unified description, im-
plementation, quantization, distributed averaging problem

1. INTRODUCTION

Distributed computing environments, such as ad-hoc wireless sen-
sor networks and computer clusters, provide many advantages over
a centralized processing solution, larger computation power and ro-
bustness against node failures being examples.

However, comparing the ad-hoc wireless sensor networks with
computer clusters, it is clear that the first mentioned solution is much
more difficult to implement reliably. Since the nodes in sensor net-
works usually have no information about the whole network topol-
ogy and have only a small computation power, and communication
links are of limited bandwidth, proper distributed algorithms that al-
ways converge to the desired result need to be designed very care-
fully.

Well-known approaches that satisfy these requirements is the
gossip-based and consensus based approach, both solving the prob-
lem of distributed averaging[1, 2]. More sophisticated algorithms
also based on these basic approaches include distributed least-mean
squares (LMS)[3], recursive least-squares (RLS)[4] or projection ap-
proximation subspace tracking (PAST)[5] algorithm.

Typically all these algorithms assume infinite precision compu-
tation in every node and unlimited bandwidth on communication
links. It is of interest to investigate the impact of these imperfec-
tions on the performance of distributed algorithms. Such errors are
caused by the following constraints:

∙ Quantized measurement – sensors have limited sensing
capabilities[6, 7].

This work has been funded by the NFN SISE project (National Research
Network ”Signal and Information Processing in Science and Engineering”).

∙ Quantized computation – sensors have limited computation
precision, usually with fixed-point representation.

∙ Quantized communication links – sensors are able to transmit
only few bits due to power constraints and limited bandwidth
[8, 9].

All these perturbations caused by quantization can dramatically
change the accuracy, convergence speed and stability of the dis-
tributed algorithms. In order to propose solutions that are more
robust and to deeply study the impact of the implementation, we in-
troduce a unifying description of any distributed algorithm. It allows
us to consider a wide range of algorithms with the same analysis
tool.

Organization of the paper In Section 2 we introduce the no-
tation and the general framework, which is in Section 3 applied to
distributed averaging algorithms. The impact of the quantization and
its statistical properties are derived in Section 4. Finally in Section 5
we show and discuss some simulation results.

2. UNIFYING DESCRIPTION

2.1. Notation

A network is represented by a directed graph G = (V, ℰ), where
V is a set of ∣V∣ vertices (nodes) and ℰ is a set of ∣ℰ∣ edges. The
graph is supposed to have no self-loops (e = (u, u) /∈ ℰ) and each
element of ℰ is unique. Let us denote Pred(v) and Succ(v) the set
of preceding and succeeding vertices of node v, respectively, i.e.

Pred(v) ≜ {u ∈ V ∣ ∃ e = (u, v) ∈ ℰ} (1)

Succ(v) ≜ {w ∈ V ∣ ∃ e = (v, w) ∈ ℰ}. (2)

The network G = (V, ℰ) is supposed to be static. Nevertheless
we can consider some instant k0 when we switch from network G1

to network G2 (for example by adding or removing some edges or
vertices).

We associate the graph G with a numbering scheme (i.e. a bijec-
tion that associates each node to a unique number in {1, . . . , ∣V∣}),
so that a node can serve as an index of a matrix. Then we can define
the ingoing-adjacency matrix of G, denoted AG ∈ ℝ∣V∣×∣V∣, by

(AG)i,j =

{
1 if (i, j) ∈ ℰ
0 if (i, j) /∈ ℰ . (3)

2.2. Distributed algorithms

In this contribution we only consider synchronized1 nodes. At the
beginning of step k, each node receives data from its neighbors, then
uses them in its algorithm, and send some data at the end of step k to
its neighbors. They will receive them at the beginning of step k+1.

1This synchronization may be performed in the higher protocol layer used
in data transmission, e.g. [10].



We define the following:
∙ zv(k) is the result of the main algorithm of node v at step k.
∙ uv(k) is the measurement (observation) of node v at step k.
∙ yu�v(k) is the data sent from node u to node v. Node u sends

them at the end of step k− 1, and node v receives them at the
beginning of step k.

In some algorithms (like in consensus propagation), the result of
computation at node v, zv(k), is exactly the data sent to its neighbors
yu�v(k), but in general it is not always the case.

Note that z, u and y can be scalars, vectors, matrices, or a col-
lection (list) of scalars/vectors/matrices. Without loss of generality,
we consider them as column vectors. Their dimensions are constant
in time.

We will also consider yv�v(k + 1) the data computed at step k
by node v and sent to itself (referred later in the paper as a state).
Moreover, at each step k, nodes communicate with some (not neces-
sary all) of their neighbors. We denote the following sets:

1. Sendv(k) ⊆ Succ(v): set of nodes (in the neighborhood of
v) to which the node v is going to send the messages

2. Recv(k) ⊆ Pred(v): set of nodes (in the neighborhood of
v) from which the node v received the messages at step k,

If there is no failure in the communication links, then:

∀v ∈ V, Recv(k + 1) ≜ {u ∈ V ∣ v ∈ Sendu(k)} (4)

otherwise the equality becomes an inclusion.
Note also that it is equivalent to define ℰ ′(k) ⊆ ℰ as the sub-

set of used edges (in that case, Sendv(k) = Succℰ′(k)(v) and
Recv(k) = Predℰ′(k)(v)). Then G′(k) = (V, ℰ ′(k)) denotes the
sub-network at step k.

For every node v, at every time step k, a local distributed algo-
rithm is composed of following procedures:

1. Define the set Sendv(k) (for broadcast, Sendv(k) =
Succ(v)).

2. Receive data from the communicating neighbors
{yu�v(k)}u∈Recv(k)

.

3. Compute the computation result zv(k), the transmission
data {yv�w(k + 1)}w∈Sendv(k)

and the local data to store
yv�v(k + 1) (data to send to itself) from the current mea-
surement uv(k), the data received {yu�v(k)}u∈Recv(k)

and
the local stored data yv�v(k).

4. Send the data {yv�w(k + 1)}w∈Sendv(k)
to the selected

neighbors.

2.3. Homogeneously distributed algorithms

Definition 1 (HDA). Homogeneously distributed algorithm is a lo-
cal distributed algorithm where:

∙ a node does not make any differences in its neighbors
∙ a node sends its data with the same data-type to its neighbors

i.e., ∀v ∈ V,∀w ∈ Succ(v):

yv�w(k) = yv(k) (5)

which can be formalized as follows:

zv(k) = fv
(

uv(k), {yu(k)}u∈Recv(k)
, xv(k)

)
(6)

xv(k + 1) = gv
(

uv(k), {yu(k)}u∈Recv(k)
, xv(k)

)
(7)

yv(k + 1) = ℎv

(
uv(k), {yu(k)}u∈Recv(k)

, xv(k)
)

(8)

where xv(k) ≜ yv�v(k) is consistent with a state notation.

The size of the set {yu�v(k)}u∈Recv(k)
may change at each

time k, but the functions fv, gv, ℎv are the same, capable to accept
three inputs of time-varying sizes. Since the size does not depend on
the node, let us also denote by nX and nY the size of the column
vector xv(k) and yv(k), respectively.

2.4. Linear HDA

Definition 2 (Linear HDA). If update strategy (7) and the com-
munication strategy (8) are linear functions, then the algorithm is
said to be linear homogeneously distributed and can be described
as follows:

zv(k) = fv
(

uv(k), {yu(k)}u∈Recv(k)
, xv(k)

)
(9)

xv(k + 1) = ®v

∑

u∈Recv(k)

yu(k) + ¯vxv(k) + µvuv(k) (10)

yv(k + 1) = °v
∑

u∈Recv(k)

yu(k) + ±vxv(k) + #vuv(k) (11)

where ®v ∈ ℝnX×nY (receptivity), ¯v ∈ ℝnX×nX (self-transmissivity),
µv ∈ ℝnX×nU (absorptivity), °v ∈ ℝnY ×nY (transmissivity),
±v ∈ ℝnY ×nX (distributivity) and #v ∈ ℝnY ×nU (emissivity) are
constant matrices.

Remark: We do not consider the linearization of the outputs,
since this equation is not involved in the iteration loop.

It is possible to aggregate the vectors {xv(k)}v∈V together in
a column vector x(k) ∈ ℝ(∣V∣nX )×1 (and the vectors {yv(k)}v∈V
together in a column vector y(k) ∈ ℝ(∣V∣nY )×1, respectively).

Let us denote, to make the connection between local and global
algorithms:

® ≜ diag(®1, . . . , ®v, . . . , ®∣V∣) ∈ ℝ(∣V∣nX )×(∣V∣nY ) (12)

¯ ≜ diag(¯1, . . . , ¯v, . . . , ¯∣V∣) ∈ ℝ(∣V∣nX )×(∣V∣nX ) (13)

µ ≜ diag(µ1, . . . , µv, . . . , µ∣V∣) ∈ ℝ(∣V∣nX )×(∣V∣nU ) (14)

° ≜ diag(°1, . . . , °v, . . . , °∣V∣) ∈ ℝ(∣V∣nY )×(∣V∣nY ) (15)

± ≜ diag(±1, . . . , ±v, . . . , ±∣V∣) ∈ ℝ(∣V∣nY )×(∣V∣nX ) (16)

# ≜ diag(#1, . . . , #v, . . . , #∣V∣) ∈ ℝ(∣V∣nY )×(∣V∣nU ). (17)

Proposition 1 (Global algorithm). Using the set of equations (12-
17), a global algorithm (the aggregation of the algorithms of all the
nodes) can be formulated by:

zv(k) = f
(

uv(k), {yu(k)}u∈Recv(k)
, xv(k)

)
(18)

x(k + 1) = ®
(
AG′(k) ⊗ InY

)
y(k) + ¯x(k) + µu(k) (19)

y(k + 1) = °
(
AG′(k) ⊗ InY

)
y(k) + ±x(k) + #u(k). (20)

3. EXAMPLES

3.1. Push-Sum protocol

The push-sum protocol[11] is a simple algorithm for distributed av-
eraging. It belongs to the class of gossip-based algorithms. Ac-
cording to our formalism, this is a linear homogenously distributed
algorithm with following properties:

nX = nY = 2, u(k) = 0 ∀k > 0,



xv(0) =

(
uv(0)
1

)

x(k) and y(k) both represent
(

sum
weigℎt

)
(there is no difference be-

tween data kept and data sent). At time step k, each node randomly
selects only one of his neighbors. Therefore AG′(k) contains at most
one 1 in every row. We then find

® = ¯ = ° = ± = 1
2

I2∣V∣ (21)

zv(k) = x(1)(k)
x(2)(k)

(22)

where x(1)(k) and x(2)(k) are the two components of xv(k).

3.2. Consensus propagation

Consensus propagation (e.g. [12]) is also a distributed algorithm for
solving distributed averaging problems. It can be formalized by

nX = nY = 1, u(k) = 0 ∀k > 0,

z(k) = x(k + 1) = y(k + 1)

and the nodes are initialized by x(0) = u(0).
The nodes broadcast their data, therefore AG′(k) = AG , ∀k ≥ 0, and

¯ = ± = I∣V∣ − ²DG (23)
® = ° = ²I∣V∣ (24)

where ² > 0 is the step-size, DG is the degree matrix of the graph G.

3.3. Real-valued average consensus over noisy quantized
channels [8, Censi]

In [8], Censi and Murray proposed a new strategy to deal with aver-
age consensus with quantized communication and preserve the con-
vergence (not necessary to the true average).

Their algorithm is based on an integration of the quantization
communication error to be re-injected into the system. Denoting
x⊤(k) ≜

(
x⊤
1 (k), x⊤

2 (k), c⊤(k)
)
, and using the notation from [8]

(for ´; Δ; D; x1(k) ≡ x(k); x2(k) ≡ y(k); c(k) ≡ c(k)), the
algorithm can be written as follows:

® = I∣V∣ ⊗

⎛
⎜⎝

´
Δ
´
Δ

0

⎞
⎟⎠ (25)

¯ = ´
Δ

D ⊗
⎛
⎝
−1 0 0
−1 0 0
0 0 0

⎞
⎠+ I∣V∣ ⊗

⎛
⎝

1 0 0
2 −1 −1

−1 1 1

⎞
⎠ (26)

° = ´
Δ

D ⊗ (−1 0 0
)
+ I∣V∣ ⊗

(
2 −1 −1

)
(27)

± = ´
Δ

I∣V∣. (28)

Nodes are initialized by x⊤(0) =
(
u⊤(0), 0⊤

∣V∣, 0⊤
∣V∣

)
and we

communicate with all neighbors, i.e. AG′(k) = AG ,∀k ≥ 0.

4. IMPACT OF THE QUANTIZATION

Let us define the first (¹) and second (¾2, Ψ) order moments of a
noise vector » by:

¹» ≜ E {»(k)} (29)

Ψ» ≜ E
{
(»(k)− ¹»)(»(k)− ¹»)

⊤
}

(30)

¾2
» ≜ E

{
(»(k)− ¹»)

⊤(»(k)− ¹»)
}
= tr(Ψ») (31)

where E{⋅} and tr(⋅) are the mean and the trace operator, respec-
tively. Let us denote

Γ(k) ≜
(

x(k)
y(k)

)
. (32)

Then the algorithm can be seen as a state-space system

Γ(k + 1) =

(
¯ ®(AG′(k) ⊗ InY )
° ±(AG′(k) ⊗ InY )

)

︸ ︷︷ ︸
P(k)

Γ(k)+

(
µ
#

)

︸ ︷︷ ︸
Q

u(k). (33)

Due to the real implementation, two terms need to be added:
∙ »′(k) - noise due to the computations

∙ »(k) - noise due to the quantization of the sent data (apply
only to y(k)).

The distortion in measurement is implicitly contained in u(k).

Remark: These noises are merely determined by the used im-
plementation scheme. In a fixed-point scheme, these noises are in-
dependent white Gaussian noises with given moments defined by
the word-lengths used in the algorithm, and the algorithm itself. For
more details see [13, 14].

The implemented system is then given by

Γ★(k + 1) = P(k)Γ★(k) + Qu(k) + R³(k), (34)

where R is any linear transformation of the noise term ³(k) (note
that ³(k) contains »(k) and »′(k)). For example, for ”Censi algo-
rithm” (see Section 3.3), by definition of the algorithm, we have

R =

⎛
⎜⎜⎝

I∣V∣ ⊗
⎛
⎝
0
1
0

⎞
⎠

I∣V∣

⎞
⎟⎟⎠ (35)

because the same communication noise applies to x2(k) and y(k).
Proposition 2. Considering a case where P is constant in time.
Then, the term ΔΓ★(k) ≜ Γ★(k)−Γ(k) is the noise added to Γ(k)
and satisfies

ΔΓ★(k + 1) = PΔΓ★(k) + R³(k). (36)

Thus, the first and second moment order of ΔΓ★ are given by

¹ΔΓ★ = ¹³(I − P)−1R, ¾2
ΔΓ★ = tr(W), (37)

where W is the solution of the Lyapunov equation W = PWP⊤ +
RΨ³R⊤.
Proof: The noise ³ is added to ΔΓ through the state-space system
(P,R, I, 0). Classical result on noises through systems applies here.
See [13, 15] for more details.

Remark: For distributed algorithms solving averaging problems,
the matrix P always contains one eigenvalue of value 1. In that case,
(I − P) is not invertible, and we can conclude that the added noise
³ must be of zero-mean for the algorithm to converge. However, the
term (I − P)−1 R can be computed when R works as a stabilizing
term, i.e. when lim

n→∞
∑n

i=0

(
PiR

)
exists. This is also the case for

the ”Censi algorithm” with R definied as (35).
Thus, using this approach we can exactly compute the ”drift

from the mean” (¹ΔΓ★ ) and the ”average disagreement” (¾2
ΔΓ★ )

for which Censi, though from different point of view, set only loose
bounds (see Tab. 1).



5. SIMULATIONS
To verify the above mentioned theoretical relations for consensus
propagation and quantized consensus propagation, simulations with
several networks with different topologies were performed.

For unquantized consensus propagation the convergence with
added zero-mean noise was studied and it was shown that the the-
oretical bounds hold (see Fig. 1(a)).

For consensus propagation with quantized communication (see
Fig. 1(b)) the convergence of the algorithm even for non-zero mean
noise was verified. We observe that this additive noise can be of
any type (not only e.g. round-off noise). The theoretical results
of Proposition 2 were confirmed by simulations and compared with
bounds derived by Censi (see Tab. 1). It must be noted, however, that
(¹³ , Ψ³) were computed from true error noise added, while Censi’s
bounds are predicted. Nevertheless, the estimation of (¹³ , Ψ³) of
quantization noise (see [13]), as well as any additive noise, can be
calculated in advance, thus the equation (37) still holds.

The equivalence of the proposed formalism with the original al-
gorithms was examined and was proved to be exactly, value by value,
identical.

x
1
(k
)

k

(a) Behaviour of node 1 - consensus propagation (see Sec-
tion 3.2): ¹ΔΓ∗

sim
= 0, ¹ΔΓ∗

tℎeor
= 0, ¾2

ΔΓ∗
sim

=

3.5, ¾2
ΔΓ∗

tℎeor
= 3.53.

x
v
(k
),

v
=

1
,2

k

�ΔΓ∗

(b) Behaviour of the first 2 nodes – ”Censi algorithm” (see Sec-
tion 3.3): ¹ΔΓ∗

sim
= 0.50, ¹ΔΓ∗

tℎeor
= 0.49, ¾2

ΔΓ∗
sim

=

82.86, ¾2
ΔΓ∗

tℎeor
= 82.86.

Fig. 1. Simulation for a regular undirected network with random
initial values. ∣V∣ = 10, Δ = 6.

6. CONCLUSION
In this paper we have proposed a general formalism for the analysis
of distributed algorithms. In this formalism we have defined a class

network
topology
∣V∣ = 10

¹ΔΓ∗
tℎeor

Censi’s
bound on the
mean drift[8]

¾2
ΔΓ∗

tℎeor

Censi’s
average
disagreement[8]

star 0.0032 0.05 0.0000585 1.2247
complete 0.0121 0.05 0.00000908 1.2247

Table 1. Comparison of Censi’s bounds (see [8]) vs. our exact theo-
retical approach.

of algorithms (linear HDA) having equivalent global behaviour and
we have analyzed some well-known algorithms belonging to that
class. Although these first analyses have revealed some of the capa-
bilities of this framework, a deeper insight into this formalism which
could help us to better analyze the behaviour of implemented dis-
tributed algorithms (e.g. fixed-point implementation), is still needed.
Novel robust algorithms based on bounds, set by this formalism,
seem to be also a potential goal of future research.

7. REFERENCES

[1] C. C. Moallemi and B. Van Roy, “Consensus Propagation,” IEEE
Transactions on Information Theory, vol. 52, no. 11, pp. 4753–4766,
2006.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Coop-
eration in Networked Multi-Agent Systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[3] A.H.Sayed and C.G. Lopes, “Distributed processing over adaptive net-
works,” in 9th International Symposium on Signal Processing and Its
Applications (ISSPA 2007), Feb. 2007, pp. 1–3.

[4] A.H. Sayed and C.G. Lopes, “Distributed recursive least-squares strate-
gies over adaptive networks,” in Fortieth Asilomar Conference on Sig-
nals, Systems and Computers (ACSSC ’06), Nov. 2006, pp. 233–237.

[5] C. Reyes, T. Hilaire, and C. F. Mecklenbräuker, “Distributed Projec-
tion Approximation Subspace Tracking Based on Consensus Propaga-
tion,” The Third International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP ’09), 2009.

[6] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in Ad Hoc
WSNs With Noisy Links– Part I: Distributed Estimation of Determin-
istic Signals,” IEEE Transactions on Signal Processing, vol. 56, no. 1,
pp. 350 – 364, 2008.

[7] A. Ribeiro, Distributed Quantization-Estimation for Wireless Sensor
Networks, Ph.D. thesis, Faculty of the graduate school of the university
of Minnesota, 2005.

[8] A. Censi and R.M. Murray, “Real-valued average consensus over noisy
quantized channels,” in American Control Conference (ACC ’09), June
2009, pp. 4361–4366.

[9] A. Kashyap, T. Başar, and R. Srikant, “Quantized consensus,” in IEEE
International Symposium on Information Theory, July 2006, pp. 635–
639.

[10] K. Römer, “Time synchronization in ad hoc networks,” in MobiHoc
’01: Proceedings of the 2nd ACM international symposium on Mobile
ad hoc networking & computing, 2001, pp. 173–182.

[11] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of ag-
gregate information,” in Proceedings of 44th Annual IEEE Symposium
on Foundations of Computer Science, Oct. 2003, pp. 482–491.

[12] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri, “Average consensus
on networks with quantized communication,” in Int. Journal of Robust
and Nonlinear Control, 2008.

[13] T. Hilaire, D. Ménard, and O. Sentieys, “Bit accurate roundoff noise
analysis of fixed-point linear controllers,” in Proc. IEEE Int. Sympo-
sium on Computer-Aided Control System Design (CACSD’08), Sept.
2008.

[14] B. Widrow, “Statistical analysis of amplitude quantized sampled-data
systems,” Trans AIEE, vol. 2, no. 79, pp. 555–568, 1960.

[15] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
Mc Graw Hill, 1991.


