
Reliable evaluation of the Worst-Case Peak Gain
matrix in multiple precision

Anastasia Volkova, Thibault Hilaire, Christoph Lauter
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

Email: first_name.last_name@lip6.fr

Abstract—The worst-case peak gain (WCPG) of a linear
filter is an important measure for the implementation of signal
processing algorithms. It is used in the error propagation analysis
for filters, thus a reliable evaluation with controlled precision is
required. The WCPG is computed as an infinite sum and has
matrix powers in each summand. We propose a direct formula
for the lower bound on truncation order of the infinite sum in
dependency of desired truncation error. Several multiprecision
methods for complex matrix operations are developed and their
error analysis performed. A multiprecision matrix powering
method is presented. All methods yield a rigorous solution with
an absolute error bounded by an a priori given value. The results
are illustrated with numerical examples.

Introduction

The majority of control and digital signal processing al-
gorithms are dedicated to linear time-invariant (LTI) systems
with finite or infinite impulse response. Most of them are
implemented for application in embedded systems, which use
finite-precision arithmetic. Unfortunately, the quantification of
coefficients and further roundoff errors lead to degradation
of the algorithms. Therefore, an accurate error analysis of
implementation of such algorithms is required.

However, this analysis is complicated by the non-linear
propagation of errors through the filter as they are amplified on
each step by internal state of the system. A solution is proposed
in [8], based on a property of bounded-input bounded output
systems [1], [2] where the largest possible peak value of the
output is determined by the use of the Worst-Case Peak Gain
(WCPG) matrix. Error propagation analysis in LTI systems is
directly dependent on the reliable evaluation of the WCPG.

This measure is computed with an infinite sum and has matrix
powers in each summand. These problems are both known to
be non-trivial. In this article we propose a detailed algorithm
for the reliable evaluation of the WCPG matrix with multiple
precision. This algorithm ensures that the WCPG is computed
with an absolute error rigorously bounded by an a priori given
value ε. For these purposes several multiprecision algorithms
for complex entries with rigorous bounds were developed.
This is achieved by adapting the precision of intermediate
computations and correct rounding. Therefore, we present not
only the error analysis of the approximations made on each step
of the WCPG computation, but we also deduce the required
accuracy for our kernel multiprecision algorithms such that the
overall error bound is satisfied.

We analyze the error induced by truncating the infinite sum
and a direct formula for the computation of a lower bound on

truncation order for a desired absolute error. The truncation
order algorithm involves Interval Arithmetic computations and
uses Theory of Verified Inclusions.

Some preliminary definitions about LTI systems are recalled
in Sec. I. Sec. II describes the global algorithm used to reliably
evaluate the WCPG matrix. The truncation order and the
truncation error are analyzed in Sec. III. Sec. IV is focused on
the different steps used for the summation and the associated
error analysis, whereas Sec. V details some basic bricks in
multiple precision. Finally, numerical examples are presented
in Sec. VI before conclusion.

Notation: Throughout the article matrices are in uppercase
boldface (for example A), vectors are in lowercase boldface (for
example v), scalars are in lowercase (for example α). Operators
⊗, and ⊕ denote floating-point (FP) multiplication and addition
respectively, F the set of FP numbers. [x] corresponds to an
interval. A∗ denotes the conjugate transpose of the matrix A.
All matrix absolute values and inequalities are considered to be
element-by-element, for example |A| < |B| denotes

∣∣∣Ai j

∣∣∣ < ∣∣∣Bi j

∣∣∣
∀i, j. In addition, A < ε denotes Ai j < ε ∀i, j. In denotes the
identity matrix of size n× n and ρ(A) the spectral radius of A.

In further discussions the error matrices are bounded in
respect to their Frobenius norm. Let K be a square n×n matrix
with ‖K‖2 6 1, then for all k,

∥∥∥Kk
∥∥∥

2 6 1 and
∥∥∥Kk

∥∥∥
F 6

√
n.

I. LTI filters andWorst-Case Peak Gain

A Linear Time Invariant (LTI) filter is a system used in
signal processing, image processing, control theory, etc. It
is defined by an input-output relationship in time-domain or
equivalently in frequency-domain. Linear controllers, Finite
Impulse Response (FIR) filters, Infinite Impulse Response (IIR)
are classical examples of LTI systems. We focus here only on
discrete-time systems: a discrete-time LTI system (filter) is a
numerical application that transforms an input signal {u(k)}k>0
into an output signal {y(k)}k>0 (u(k) and y(k) may be vectors
or scalars), where k ∈ N is the step time.

A common input-output relationship is the state-space
representation [9]. It describes the evolution of the state vector
x(k) from the previous step and the input:

H

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (1)

where u(k) ∈ Rq×1 is the input vector, y(k) ∈ Rp×1 the output
vector, x(k) ∈ Rn×1 the state vector and A ∈ Rn×n, B ∈ Rn×q,
C ∈ Rp×n and D ∈ Rp×q are the state-space matrices of the

system. Unlike a mathematical function, the output at time
k depends not only on in the input at time k but also on
the internal state of the filter (generally determined from the
previous inputs and outputs).

Proposition 1 (Bounded Input Bounded Output systems): Let
H be a state-space system. If an input {u(k)}k>0 is known to be
bounded by ū (∀k > 0, |ui(k)| 6 ūi, 1 6 i 6 q), then the
output {y(k)}k>0 will be bounded iff the spectral radius ρ(A)
is strictly less than 1. This property is known as the Bounded
Input Bounded Output (BIBO) stability [9].

Moreover, in that case, the output is (component-wise)
bounded by ȳ with ȳ = Wū where W ∈ Rp×q is the Worst-Case
Peak Gain matrix [1] of the system, defined by

W := |D| +
∞∑

k=0

∣∣∣CAk B
∣∣∣ (2)

Proof: Let {J(k)}k>0 be the impulse response matrix of the
system, i.e. J i j(k) is the response on the ith output to the Dirac
impulse at time k = 0 (i.e. δ(0) = 1 and δ(k) = 0, ∀k , 0) on
the jth input. With (1), we have

J(k) =

D if k = 0
CAk−1B if k > 0.

(3)

Thanks to the linearity and time invariance property of LTI
systems [9], we get

y(k) =

k∑
l=0

J(l)u(k − l). (4)

Then the output is (component-wise) bounded by

y(k) 6

 k∑
l=0

|J(l)|

 ū, ∀k > 0. (5)

We have equality for the ith output if the input is such that
u j(l) = ū · sign

(
J i j(k − l)

)
, ∀0 6 l 6 k, where sign(x) returns

±1 or 0 depending on the sign of x.
Remark 1: Wū is the supremum of the output {y}k>0, since

it is possible to build a finite input {u(k)}06k6K to approach it
on any given output at any given distance.

Remark 2: This proposition can be completed when consid-
ering intervals for the input, instead of bounds (corresponding
to symmetric intervals). In that case, the Worst-Case Peak Gain
matrix indicates by how much the radius of the input interval
is amplified on the output [8] (although this is not valid for
the transient phase, i.e. for the few first steps). However, even
in that case, Wū is a supremum we need to compute.

This proposition can be used to bound outputs, states
or intermediate variables in the context of finite precision
implementation of algorithms, and more specifically in Fixed-
Point arithmetic. In [7], an extension of the state-space has
been presented, in order to represent and encompass all the
possible algorithms for linear filters (i.e. all the input-to-output
data flows based on additions, multiplications by constant and
delay, such as state-space, direct forms, ρDFIIt [18], etc.), and
the same approach was applied.

First, it is used to bound all the variables involved in the
algorithm, and then to determine their fixed-point representation

H∗
u(k)

e(k)

y∗(k)
⇐⇒

H

He

u(k)

e(k)
+

y(k)

∆y(k)

y∗(k)

Fig. 1. The implemented filter is equivalent to the exact filter where the output
is corrupted by the computational errors passing themselves through a filter.

(position of the Most Significant Bit and scaling) while
preserving by construction from overflow.

Second, it is used to determine the impact on the output
of the computational errors. Classical error analysis cannot
be used in that context due to the feedback scheme of the
computation (Interval Arithmetic or Affine Arithmetic do not
provide tight bounds [12]).

Since the filter is linear, the implemented filter H∗ can be
seen as the exact filter H where the output is corrupted by the
vector of errors e(k) occurring at each sum of product through
a given linear filter He (see Figure 1).

A State-space representation of He can be obtained analyti-
cally [8] and Proposition 1 can be used to determine the output
error ∆y due to finite-precision arithmetic.

For all these reasons, the reliable computation of the Worst-
Case Peak Gain matrix is a required step for the accurate error
analysis of LTI systems in finite precision.

II. Algorithm forWCPG evaluation

Given a BIBO stable LTI filter in state-space realization
(1) and ε, a desired absolute approximation error, we want to
determine the Worst-Case Peak Gain matrix W of this filter,
defined in (2). While computing such an approximation, various
errors, such as truncation and summation errors, are made.

Instead of directly computing the infinite sum
∣∣∣CAk B

∣∣∣ for any
k > 0, we will use an approximate eigenvalue decomposition
of A (i.e. A ≈ VTV−1) and compute the FP sum

∣∣∣CVTkV−1B
∣∣∣

for 0 6 k 6 N.
Our approach to compute the approximation SN of W is

summarized in algorithm 1 where all the operations (⊗, ⊕, inv,
abs, etc.) are FP multiple precision operations done at various
precisions to be determined such that the overall error is less
than ε:

|W − SN | 6 ε. (6)
The overall error analysis decomposes into 6 steps, where

each one expresses the impact of a particular approximation
(or truncation), and provides the accuracy requirements for the
associated operations such that the result is rigorously bounded
by ε. These steps are discussed in detail in Sec. III and IV:

Step 1: Let WN be the truncated sum

WN :=
N∑

k=0

∣∣∣CAk B
∣∣∣ + |D| . (7)

We compute a truncation order N of the infinite sum W such
that the truncation error is less than ε1 > 0:

|W −WN | 6 ε1. (8)

See Sec. III for more details.

Algorithm 1: Floating-point evaluation of the WCPG.
Input: A ∈ Fn×n, B ∈ Fn×q,C ∈ Fp×n, D ∈ Fp×q, ε > 0
Output: SN ∈ Fp×q

Step 1: Compute N
Step 2: Compute V from an eigendecomposition of A

T ← inv(V) ⊗ A ⊗ V
if ‖T‖2 > 1 then return ⊥

Step 3: B′ ← inv(V) ⊗ B
C′ ← C ⊗ V
S−1 ← |D|, P−1 ← In

for k from 0 to N do
Step 4: Pk ← T ⊗ Pk−1
Step 5: Lk ← C′ ⊗ Pk ⊗ B′
Step 6: Sk ← Sk−1 ⊕ abs(Lk)

end
return SN

Step 2: Error analysis for computing the powers Ak of a full
matrix A, when the k reaches several hundreds, is a significant
problem, especially when the norm of A is larger than 1 and its
eigenvalues are close to 1. However, if A may be represented
as A = XEX−1 with E ∈ Cn×n strictly diagonal and X ∈ Cn×n,
then powering of A reduces to powering the diagonal matrix
E, which is more convenient.

Suppose we have a matrix V approximating X. We require
this approximation to be just quite accurate so that we are able
to discern the different associated eigenvalues and be sure their
absolute values are less than 1.

We may then consider the matrix V to be exact and compute
an approximation T to V−1 A V with sufficient accuracy such
that the error of computing VTkV−1 instead of matrix Ak is
less than ε2 > 0:∣∣∣∣∣∣∣WN −

N∑
k=0

∣∣∣CVTkV−1B
∣∣∣∣∣∣∣∣∣∣ 6 ε2. (9)

See Sec. IV-A.
Step 3: We compute approximations B′ and C′ of V−1B

and CV, respectively. We require that the propagated error
committed in using B′ instead of V−1B and C′ instead of CV
be less than ε3 > 0:∣∣∣∣∣∣∣

N∑
k=0

∣∣∣CVTkV−1B
∣∣∣ − N∑

k=0

∣∣∣C′Tk B′
∣∣∣∣∣∣∣∣∣∣ 6 ε3. (10)

See Sec. IV-B.
Step 4: We compute in Pk the powers Tk of T with a certain

accuracy. It is required that the error be less than ε4 > 0:∣∣∣∣∣∣∣
N∑

k=0

∣∣∣C′Tk B′
∣∣∣ − N∑

k=0

∣∣∣C′Pk B′
∣∣∣∣∣∣∣∣∣∣ 6 ε4. (11)

See Sec. IV-C.
Step 5: We compute in Lk each summand C′Pk B′ with a

error small enough such that the overall approximation error
induced by this step is less than ε5 > 0:∣∣∣∣∣∣∣

N∑
k=0

∣∣∣C′Pk B′
∣∣∣ − N∑

k=0

|Lk |

∣∣∣∣∣∣∣ 6 ε5. (12)

See Sec. IV-D.
Step 6: Finally, we sum Lk in SN with enough precision

so that the absolute error bound for summation is bounded by
ε6 > 0: ∣∣∣∣∣∣∣

N∑
k=0

|Lk | − SN

∣∣∣∣∣∣∣ 6 ε6. (13)

See Sec. IV-E.
By ensuring that each step verifies its bound εi, and taking

εi = 1
6ε, we get ε1 + ε2 + ε3 + ε4 + ε5 + ε6 6 ε, hence (6) will

be satisfied if inequalities (8) to (13) are.
Our approach hence determines first a truncation order N

and then performs summation up to that truncation error,
whilst adjusting precision in the different summation steps.
A competing approach would be not to start with truncation
order determination but to immediately go for summation and
to stop when adding more terms does not improve accuracy.
However, such an approach would not allow the final error to
be bounded in an a priori way. As we shall see, the multiple
precision FP summation needs to know a bound on the number
of terms to be summed, beforehand.

III. Truncation order and truncation error

In [1] Balakrishnan and Boyd propose "simple" lower and
upper bounds on N. However, they describe their algorithm
in terms of exact arithmetic, i.e. do not propose any error
analysis. This iterative algorithm has several difficulties: first of
all, matrix A exponentiation is present, which would require an
error analysis such as the one proposed in this article. Secondly,
on each iteration (the quantity of which may reach order as high
as N) a solution of Lyapunov equations is required, for which
there exist no ready to use solution with rigorous error bounds
on the result. Therefore, a different approach is indispensable.
In this Section we propose a direct formula for the lower bound
on N along with a reliable evaluation algorithm.

The goal is to determine a lower bound on the truncation
order N of the infinite sum (2) such that its tail is smaller
than the given ε1. Obviously, WN is a lower bound on W and
increases monotonically to W with increasing N. Hence the
truncation error is

|W −WN | =
∑
k>N

∣∣∣CAk B
∣∣∣ . (14)

A. A bound on the truncation error

Many simple bounds on (14) are possible. For instance, if
the eigendecomposition of A is computed

A = XEX−1 (15)

where X ∈ Cn×n is the right hand eigenvector matrix, and
E ∈ Cn×n is a diagonal matrix holding the eigenvalues λl, the
terms CAk B can be written

CAk B = ΦEkΨ =

n∑
l=1

Rlλ
k
l (16)

where Φ ∈ Cp×n, Ψ ∈ Cn×q and Rl ∈ Cp×q are defined by

Φ := CX, Ψ := X−1B, (Rl)i j := ΦilΨl j. (17)

In this setting, we obtain

|W −WN | =
∑
k>N

n∑
l=1

∣∣∣Rlλ
k
l

∣∣∣ . (18)

As required by Proposition 1, all eigenvalues λl of matrix
A must be strictly smaller than one in magnitude. We may
therefore notice that the outer sum is in geometric progression
with a common ratio |λl| < 1. So the following bound is possible
(we remind the reader that inequalities and absolute values are
considered to be element by element):

|W −WN | 6
∞∑

k=N+1

n∑
l=1

|Rl|
∣∣∣λk

l

∣∣∣ 6 n∑
l=1

|Rl|

∣∣∣λN+1
l

∣∣∣
1 − |λl|

= ρ(A)N+1
n∑

l=1

|Rl|

1 − |λl|

(
|λl|

ρ(A)

)N+1

. (19)

Since |λl |

ρ(A) 6 1 holds for all terms, we may leave out the
powers. Notate

M :=
n∑

l=1

|Rl|

1 − |λl|

|λl|

ρ(A)
∈ Rp×q. (20)

The tail of the infinite sum is hence bounded by

|W −WN | 6 ρ(A)N+1 M. (21)

B. Deducing a lower bound on the truncation order

In order to get (21) bounded by ε1, it is required that

ρ(A)N+1 M 6 ε1.

Solving this inequality for N leads us to the following bound:

N >

⌈
log ε1

m

log ρ(A)

⌉
(22)

where m is defined as m := min
i, j

∣∣∣Mi, j

∣∣∣.
However we cannot compute exact values for all quantities

occuring in (22) when using finite-precision arithmetic. We
only have approximations for them. Thus, in order to reliably
determine a lower bound on N, we must compute lower bounds
on m and ρ(A), from which we can deduce an upper bound
on log ε1

m and a lower bound on log ρ(A) to eventually obtain
a lower bound on N.

C. A rigorous algorithm to determine truncation order

Due to the implementation of (15) and (17) with the finite-
precision arithmetic, only approximations on λ, X,Φ,Ψ, Rl can
be obtained. There exist many FP libraries, such as LAPACK1,
providing functions for an eigendecomposition as needed for
(15) and to solve linear systems of equations in (17). They
usually deliver good and fast approximations to the solution
of a given numerical problem but there is neither verification
nor guarantee about the accuracy of that approximation.

For these reasons we propose to combine LAPACK FP
arithmetic with Interval Arithmetic [3] enhanced with the
Theory of Verified Inclusions [14], [15] ,[16], [17] in order to
obtain trusted intervals on the eigensystem and, eventually, a
rigorous bound on N.

1http://www.netlib.org/lapack/

In Interval Arithmetic real numbers are represented as
sets of reals with addition, subtraction, multiplication and
division defined [3]. The Theory of Verified Inclusions is a
set of algorithms computing guaranteed bounds on solutions
of various numerical problems, developed by S. Rump [14].
The verification process is performed by means of checking
an interval fixed point and yields to a trusted interval for the
solution, i.e. it is verified that the result interval contains an
exact solution of given numerical problem.

It permits us to quickly obtain trusted error bounds on
the truncation order without significant impact on algorithm
performance, since this computation is done only once. In
addition, if the spectral radius of A cannot be shown less than
1, we stop the algorithm.

Using the ideas proposed by Rump in [17], we obtain trusted
intervals for the eigensystem with the following steps:
1) Using the LAPACK eigensolver, we compute FP approxi-
mations V for the eigenvectors X and α for the eigenvalues
λ, along with error estimates εX and ελ. These error estimates
are such that |λ − α| 6 ελ and |X − V| 6 εX should be not far
from the truth.
2) We construct, verify and possibly adjust intervals for [λ] =

[α − ελ,α + ελ] and [X] = [V − εX ,V + εX] such that for all
vectors λ′ ∈ [λ] there exists a matrix X′ ∈ [X] satisfying
AX′ = X′ · diag(λ′) and such that for all matrices X′ ∈ [X]
there exists a vector λ′ ∈ [λ] satisfying AX′ = X′ · diag(λ′). In
this process, first intervals for the eigensystem are constructed
from the error estimates εα and εV as radii and the approximate
solutions V and α as mid-points. Further, these intervals are
verified with inclusion algorithms [17]. If the verification does
not succeed, the intervals are extended by some small factor
and process is repeated until it succeeds or until there exists
an eigenvalue interval which contains 1.
For the solution of the linear system of equations (LSE)
appearing in (17), the algorithm for interval verification is
based on [15] and consists of two steps:
1) Using LAPACK, compute a FP approximation Ω on the
solution of VΨ = B along with an error estimate εΨ such that
|Ψ −Ω| 6 εΨ should be not far from the truth.
2) Construct, verify and adjust intervals [Ψ] =

[Ω − εΨ,Ω + εΨ] such that for all matrices X′ ∈ [X] there
exists Ψ′ ∈ [Ψ] such that X′Ψ′ = B holds.
The intervals for verification are constructed in the same way
as for the eigensystem solution. We require the existence of
the exact solution of the linear system not for VΨ = B but for
[X]Ψ = B, i.e. [Ψ] must contain the exact solution for each
element of the already verified interval [X].

Finally, the intervals for (17), (20) and (22) are computed
with Interval Arithmetic. Our complete algorithm to determine
a reliable lower bound on N is given with algorithm 2.

IV. Summation

Once the truncation order determined, we need to provide a
summation scheme reliable in FP arithmetic, i.e. such that the
error of computations is bounded by an a priori given value. To

Algorithm 2: Lower bound of truncation order
Input: A ∈ Fn×n, B ∈ Fn×q,C ∈ Fp×n, ε1 > 0
Output: N ∈ N

1 α,V, εα, εV ← LAPACK eigendecomposition for A;
2 Ω, εΨ ← LAPACK solver for VΨ = B;
3 [λ], [X]← Eigensystem verification algorithm;
4 [Ψ]← LSE solution verification algorithm;
5 [Φ]← C[X];
6 [Rl]i, j ← [Φi,l][Ψl, j] ;
7

[
ρ
]
← max

i

∣∣∣ [λi]
∣∣∣;

8 [M]←
n∑

i=1

∣∣∣∣∣[Ri]
∣∣∣∣∣

1−
∣∣∣∣∣[λi]

∣∣∣∣∣
∣∣∣∣∣[λi]

∣∣∣∣∣
[ρ] ;

9 [m]← min
i, j

∣∣∣ [M]i, j

∣∣∣;
10 N ← sup

(⌈
log ε1

[m]

log [ρ]

⌉)
;

11 return N

do so we propose to perform all operations in multiple precision
arithmetic whilst adapting precision dynamically where needed.
Several multiple precision algorithms were therefore developed:
• multiplyAndAdd(A, B,C, δ) that computes A · B + C + ∆,

where the error matrix ∆ is bounded by |∆| < δ, for the given
a priori bound δ. We shall notate A ⊗ B for the output of
multiplyAndAdd when C is the zero matrix.
• sumAbs(A, B, δ) that computes A + |B|+∆, where the error

matrix ∆ is bounded by |∆| < δ, for the given δ. With a slight
notational abuse, we shall also notate A ⊕ abs(B) for sumAbs.
• inv(V, δ) that computes the inverse V−1 +∆, where the error

matrix ∆ is bounded by |∆| < δ, for the given δ. See Sec. V.
These computation kernels adapt the precision of their inter-
mediate computations where needed. The algorithms we use
for these basic bricks will be discussed in Sec. V.

A. Step 2: using the Eigendecomposition

1) Error propagation: As seen, in each step of the summa-
tion, a matrix power, Ak, must be computed. In [6] Higham
devotes an entire chapter to error analysis of matrix powers but
this theory is in most cases inapplicable for state matrices A of
linear filters, as the requirement ρ(|A|) < 1 does not necessarily
hold here. Therefore, despite taking A to just a finite power k,
the sequence of computed matrices may explode in norm since
k may take an order of several hundreds or thousands. Thus,
even extending the precision is not a solution, as an enormous
number of bits would be required.

However, the state matrices A usually have a good structure.
In real life the state matrices are diagonalizable, i.e. there
exists a matrix X ∈ Cn×n and diagonal E ∈ Cn×n such that
A = XEX−1. Then Ak = XEk X−1. A good choice of X and
E are the eigenvector and eigenvalue matrices obtained with
eigendecomposition (15). However, with LAPACK we can
compute only approximations on them and we cannot control
their accuracy. Therefore, we propose following method to
almost diagonalize matrix A. The method does not make
any assumptions on matrix V except for it being some

approximation on X . Therefore, for simplicity of further
reasoning we treat V as an exact matrix.

Using our multiprecision algorithms for matrix inverse and
multiplication we may compute a complex n × n matrix T:

T := V−1 AV − ∆2, (23)

where V ∈ Cn×n is an approximation on X, ∆2 ∈ Cn×n is a
matrix representing the element-by-element errors due to the
two matrix multiplications and the inversion of matrix V.

Although the matrix E is strictly diagonal, V is not exactly
the eigenvector matrix and consequently T is a full matrix.
However it has prevailing elements on the main diagonal. Thus
T is an approximation on E.

We require for matrix T to satisfy ‖T‖2 6 1. This condition
is stronger than ρ(A) < 1, and Sec. IV-A2 provides a way to
test it. Naturally this condition means that there exist some
margin for computational errors between the spectral radius
and 1.

Notate Ξk := (T + ∆2)k − Tk. Hence Ξk ∈ Cn×n represents an
error matrix which captures the propagation of error ∆2 when
powering T. Since

Ak = V(T + ∆2)kV−1, (24)

therefore

CAk B = CVTkV−1B + CVΞkV−1B. (25)

Thus the error of computing VTkV−1 instead of Ak in (7)
is bounded by ∣∣∣∣∣∣∣

N∑
k=0

∣∣∣CAk B
∣∣∣ − N∑

k=0

∣∣∣CVTkV−1B
∣∣∣∣∣∣∣∣∣∣ 6 (26)

N∑
k=0

∣∣∣CAk B − CVTkV−1B
∣∣∣ 6 N∑

k=0

∣∣∣CVΞkV−1B
∣∣∣ (27)

Here and further on each step of the algorithm we use
inequalities with left side in form (27) rather than (26), i.e. we
will instantly use the triangulation property

∣∣∣ |a| − |b| ∣∣∣ 6 |a − b|
∀a, b applied element-by-element to matrices.

In order to determine the accuracy of the computations on
this step such that (27) is bounded by ε2, we need to perform
detailed analysis of Ξk, with spectral-norm. Using the definition
of Ξk the following recurrence can be easily obtained:

‖Ξk‖2 6 ‖Ξk−1‖2 + ‖∆2‖2 (‖Ξk−1‖2 + 1) (28)

If ‖Ξk−1‖2 6 1, which must hold in our case since Ξk

represent an error-matrix, then

‖Ξk‖2 6 ‖Ξk−1‖2 + 2 ‖∆2‖2 (29)

As ‖Ξ1‖2 = ‖∆2‖2 we can get the desired bound capturing
the propagation of ∆2 with Frobenius norm:

‖Ξk‖F 6 2
√

n(k + 1) ‖∆2‖F . (30)

Substituting this bound to (27) and folding the sum, we obtain
N∑

i=0

∣∣∣CVΞkV−1B
∣∣∣ 6 β ‖∆2‖F ‖CV‖F

∥∥∥V−1B
∥∥∥

F , (31)

with β =
√

n(N + 1)(N + 2). Thus, we get a bound on the error
of approximation of A by VTV−1. Since we require it to be

less than ε2 we obtain a condition for the error on the inversion
and two matrix multiplications:

‖∆2‖F 6
1
β

ε2

‖CV‖F
∥∥∥V−1B

∥∥∥
F

. (32)

Using this bound we can deduce the desired accuracy of our
multiprecision algorithms for complex matrix multiplication
and inverse as a function of ε2.

2) Checking ‖T‖2 6 1: Since ‖T‖22 = ρ(T∗T), we study
the eigenvalues of T∗T. According to Gershgorin’s circle
theorem [5], each eigenvalue µi of T∗T is in the disk centered
in (T∗T)ii with radius

∑
j,i

∣∣∣(T∗T)i j

∣∣∣.
Let us decompose T into T = F + G, where F is diagonal

and G contains all the other terms (F contains the approximate
eigenvalues, G contains small terms and is zero on its diagonal).
Denote Y := T∗T − F∗F = F∗G + G∗F + G∗G. Then∑

j,i

∣∣∣(T∗T)i j

∣∣∣ =
∑
j,i

∣∣∣Yi j

∣∣∣
6 (n − 1) ‖Y‖F
6 (n − 1)

(
2 ‖F‖F ‖G‖F + ‖G‖2F

)
6 (n − 1)

(
2
√

n + ‖G‖F
)
‖G‖F . (33)

Each eigenvalue of T∗T is in the disk centered in (F∗F)ii +(Y)ii
with radius γ, where γ is equal to (n − 1)

(
2
√

n + ‖G‖F
)
‖G‖F ,

computed in a rounding mode that makes the result become
an upper bound (round-up).

As G is zero on its diagonal, the diagonal elements (Y)ii of
Y are equal to the diagonal elements (G∗G)ii of G∗G. They
can hence be bounded as follows:

|(Y)ii| = |(G∗G)ii| 6 ‖G‖2F . (34)

Then, it is easy to see that the Gershgorin circles enclosing
the eigenvalues of F∗F can be increased, meaning that if
(F∗F)ii is such that

∀i, |(F∗F)ii| 6 1 − ‖G‖2F − γ, (35)

it holds that ρ(T∗T) 6 1 and ‖T‖2 6 1.
This condition can be tested by using FP arithmetic with

directed rounding modes (round-up for instance).
After computing T out of V and A according to (23), the

condition on T should be tested in order to determine if ‖T‖2 6
1. This test failing means that V is not a sufficient approximate
of X or that the error ∆2 done computing (23) is too large,
i.e. the accuracy of our multiprecision algorithm for complex
matrix multiplication and inverse should be increased. The
test is required for rigor only. We do perform the test in the
implementation of our WCPG method, and, on the real-world
examples we tested, never saw it fail.

B. Step 3: computing CV and V−1B
We compute approximations on matrices CV and V−1B

with a certain precision and need to determine the required
accuracy of these multiplications such that the impact of these
approximations is less than ε3.

Notate C′ := CV + ∆3C and B′ := V−1B + ∆3B , where ∆3C ∈

Cp×n and ∆3B ∈ Cn×q are error-matrices containing the errors
of the two matrix multiplications and the inversion.

Using Frobenius norm, we can bound the error in the
approximation of CV and V−1B by C′ and B′ as follows:

N∑
k=0

∣∣∣CVTkV−1B − C′Tk B′
∣∣∣ 6

N∑
k=0

∥∥∥∆3C Tk B′ + C′Tk∆3B + ∆3C Tk∆3B

∥∥∥
F . (36)

Since ‖T‖2 < 1 holds we have (using Frobenius norm
properties)∥∥∥∆3C Tk B′ + C′Tk∆3B + ∆3C Tk∆3B

∥∥∥
F 6 (37)

√
n
(∥∥∥∆3C

∥∥∥
F

(∥∥∥B′
∥∥∥

F +
∥∥∥∆3B

∥∥∥
F

)
+

∥∥∥C′
∥∥∥

F

∥∥∥∆3B

∥∥∥
F

)
.

This bound represents the impact of our approximations for
each k = 0 . . .N. If (37) is bounded by 1

N+1 ·ε3, then the overall
error is less than ε3. Hence, bounds on the two error-matrices
are: ∥∥∥∆3C

∥∥∥
F 6

1
3
√

n
·

1
N + 1

ε3

‖C′‖F
(38)∥∥∥∆3B

∥∥∥
F 6

1
3
√

n
·

1
N + 1

ε3

‖B′‖F
. (39)

Therefore, using bounds on
∥∥∥∆3C

∥∥∥
F and

∥∥∥∆3B

∥∥∥
F , we can

deduce the required accuracy of our multiprecision matrix
multiplication and inversion according to ε3.

C. Step 4: powering T

Given a square complex matrix T with prevailing main
diagonal we need to compute its kth power. Notate

Pk := Tk −Πk, (40)

where Πk ∈ Cn×n represents element-by-element the error on
the matrix powers, including error propagation from the first
to the last power. Using the same simplification as in (26)
and (27) we get the error of computing the approximations Pk

rather than the exact powers bounded by
N∑

k=0

∣∣∣C′Tk B′ − C′Pk B′
∣∣∣ 6 N∑

k=0

∣∣∣C′Πk B′
∣∣∣ . (41)

Thus a bound on a norm of Πk, say ‖Πk‖F , is required.
Since we need all the powers of T from 1 to N, we use an

iterative scheme to compute them. It is then evident, that we
may write the recurrence

Pk = TPk−1 + Γk, (42)

where Γk ∈ Cn×n is the error matrix representing the error of
the matrix multiplication at step k.

With P0 = I, P1 = T and using (42) we obtain

Pk = Tk +

k∑
l=2

Tk−lΓl. (43)

Using the condition ‖T‖2 6 1 and properties of the Frobenius
norm we get

‖Πk‖F 6

∥∥∥∥∥∥∥
k∑

l=2

Tk−lΓl

∥∥∥∥∥∥∥
F

6
√

n
k∑

l=2

‖Γl‖F . (44)

Therefore the impact of approximation of the matrix powers
is bounded by

N∑
k=0

∣∣∣C′Πk B′
∣∣∣ 6 √n(N + 1)

N∑
l=2

∥∥∥C′
∥∥∥

F ‖Γl‖F

∥∥∥B′
∥∥∥

F . (45)

Obviously, if the error of matrix multiplication Γl satisfies

‖Γl‖F 6
1
√

n
·

1
N − 1

·
1

N + 1
·

ε4

‖C′‖F ‖B′‖F
(46)

for l = 2 . . .N, then we have (45) to be less than ε4. Hence
using (46) we may deduce the required accuracy of matrix
multiplications on each step in dependency of ε4.

D. Step 5: computing Lk

Once the matrices C′, B′ and Pk are pre-computed and the
error of their computation is bounded, we must evaluate their
product. Let Lk be the approximate product of these three
matrices at step k:

Lk := C′Pk B′ + Υk, (47)

where Υk ∈ Cp×q is the matrix of element-by-element errors for
the two matrix multiplications. Then the error of computations

induced by this step is bounded by
N∑

k=0
|Υk |.

If we want the overall error of approximation on this step
to be less than ε5 then we can easily deduce the required
accuracy of each of those multiplications on every iteration of
summation algorithm.

E. Step 6: final summation

Finally the absolute value of the Lk must be taken and the
result accumulated in the sum. We remind the reader that if
all previous computations were exact, the matrix Lk would
be a real matrix and the absolute-value-operation would have
been an exact sign manipulation. However, as the computations
were in finite-precision arithmetic, Lk is complex with a small
imaginary part, which is naturally caused by the errors of
computations and must not be neglected. Therefore the element-
by-element absolute value of the matrix must be computed.

Since we perform N + 1 accumulations of absolute values
in the result sum SN , it is evident that bounding the error of
each such computation by 1

N+1ε6 is sufficient.
Therefore, using this bound for each invokation of our basic

brick algorithm sumAbs we guarantee bound (13).

V. Basic bricks

In Sec. IV, we postulated the existence of three basic
FP algorithms, multiplyAndAdd, sumAbs and inv, computing,
respectively, the product-sum, the sum in absolute value and
the inverse of matrices. Each of these operators was required
to satisfy an absolute error bound |∆| < δ to be ensured by the
matrix of errors ∆ with respect to scalar δ, given in argument
to the algorithm.

Ensuring such an absolute error bound is not possible in
general when fixed-precision FP arithmetic is used. Any such
algorithm, when returning its result, must round into that fixed-
precision FP format. Hence, when the output grows sufficiently
large, the unit-in-the-last-place of that format and hence that

final rounding error in fixed-precision FP arithmetic will grow
larger than a set absolute error bound.

In multiple precision FP arithmetic, such as offered by
software packages like MPFR2 [4], it is however possible to
have algorithms determine themselves the output precision of
the FP variables they return their results in. Hence an absolute
error bound as the one we require can be guaranteed. In contrast
to classical FP arithmetic, such as Higham analyzes, there is no
longer any clear, overall computing precision, though. Variables
just bear the precision that had been determined for them by
the previous compute step.

This preliminary clarification made, description of our three
basic bricks multiplyAndAdd, sumAbs and inv is easy.

For sumAbs(A, B, δ) = A + |B| + ∆, we can reason element
by element. We need to approximate Ai j +

√
<Bi j

2 + =Bi j
2

with absolute error no larger than δ, where <z and =z are the
real and imaginary parts of the complex z. This can be ensured
by considering the FP exponents of each of Ai j, <Bi j and
=Bi j with respect to the FP exponent of δ.

For multiplyAndAdd(A, B,C, δ) = A · B + C + ∆, we can
reason in terms of scalar products between A and B. The scalar
products boil down to summation of products which, in turn,
can be done exactly, as we can determine the precision of the
Aik and Bk j. As a matter of course the very same summation
can capture the matrix elements Ci j. Finally, multiple precision
FP summation with an absolute error bound can be performed
with a modified, software-simulated Kulisch accumulator [10],
which does not need to be exact but bear just enough precision
to satisfy the absolute accuracy bound δ.

Finally, once the multiplyAndAdd operator is available, it
is possible to implement the matrix inversion algorithm inv
using a Newton-Raphson-like iteration [13]:

U0 ← some seed inverse matrix for V−1

Rk ← VUk − In (48)
Uk+1 ← Uk − Uk R

where the iterated matrices Uk converge to V−1 provided
the multiplyAndAdd operations computing Rk and Uk+1 are
performed with enough accuracy, i.e. small enough δ and the
seed matrix satisfies some additional properties. In order to
ensure these properties with an explicit check, an operator
to compute the Frobenius norm of a matrix with a given a
priori absolute error bound δ is required. Implementing such
a Frobenius norm operator again boils down to summation,
as above. See the extended version of this paper, available at
http://hal.upmc.fr/hal-01083879 for details.

VI. Numerical examples

The algorithms discussed above were implemented in C,
using GNU MPFR version 3.1.12, GNU MPFI3 version 1.5.1
and CLAPACK4 version 3.2.1. Our implementation was tested
on several real-life and random examples:

2http://www.mpfr.org/
3https://gforge.inria.fr/projects/mpfi/
4http://www.netlib.org/clapack/

Example 1 Example 2 Example 3 Example 4

sizes n, p and q n = 10, p = 11, q = 1 n = 12, p = 1, q = 25 n = 60, p = 28, q = 14 n = 3, p = 1, q = 4
1 − ρ(A) 1.39 × 10−2 8.65 × 10−3 1.46 × 10−2 2−60

max(SN) 3.88 × 101 5.50 × 109 2.64 × 102 -
min(SN) 1.29 × 100 1.0 × 100 1.82 × 101 -

ε 2−5 2−53 2−600 2−5 2−53 2−600 2−5 2−53 2−600 2−5

N 220 2153 29182 308 4141 47811 510 1749 27485 -
Inversion iterations 0 2 4 2 3 5 1 2 4 -

overall max precision (bits) 212 293 1401 254 355 1459 232 306 1416 -
Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20 45.62 177.90 9376.86 0.00...

TABLE I
Numerical results for 3 real-world and 1 constructed example

• The first example comes from Control Theory: the LTI
system is extracted from an active controller of vehicle
longitudinal oscillation [11], and WCPG matrix is used to
determine the fixed-point arithmetic scaling of state and output.
• The second is a 12th-order Butterworth filter, described

in ρ-Direct Form II transposed [18] (a particular algorithm,
with low complexity and high robustness to quantization and
computational errors), where the errors-to-output LTI system
He is considered (see Figure 1).
• The third one is a large random BIBO stable filter (obtained

from the drss command of Matlab), with 60 states, 14 inputs
and 28 outputs.
• The last one is built with a companion matrix A with

spectral radius equal to 1 − 2−60.
Experiments were done on a laptop computer with an Intel
Core i5 processor running at 2.8 GHz and 16 GB of RAM.

The numerical results detailed in Table I show that our
algorithm for Worst-Case Peak Gain matrix evaluation with a
priori error bound exhibits reasonable performance on typical
examples. Even when the a priori error bound is pushed to
compute WCPG results with an accuracy way beyond double
precision, the algorithm succeeds in computing a result, even
though execution time grows pretty high.

Our algorithm includes checks testing that certain properties
of matrices are verified, in particular that ρ(A) < 1 and ‖T‖2 6
1. Our Example 4, not taken from a real-word application but
constructed on purpose, shows that the algorithm correctly
detects that the conditions are not fulfilled for that example.

VII. Conclusions

With this paper, a reliable, rigorous multiprecision method
to compute the Worst-Case Peak Gain matrix has been
developed. It relies on Theory of Verified Inclusion, eigenvalue
decomposition to perform matrix powering, some multiple-
precision arithmetic basic bricks developed to satisfy absolute
error bounds and a detailed step-by-step error analysis.

A C program has been developed and now can be used as a
tool for the implementation error analysis of LTI systems, and
then the design of reliable finite precision digital algorithms
for signal processing and control.

However, some efforts are still required to overcome double
precision eigenvalue decomposition in LAPACK (specially for
close-to-instability LTI systems) by using a multiple precision

eigensolver. Additionnally, as the proofs on the error bounds
are pretty complicated, they should be formalized in a Formal
Proof Checker, such as Coq or HolLight.

VIII. Acknowledgments
The authors are grateful to M. Mezzarobba and S. Graillat for

interesting discussions on topics related to this work. This work
was partly supported by the Agence nationale de la recherche grant
ANR-13-INSE-0007-02 MetaLibm.

References
[1] V. Balakrishnan and S. Boyd. On computing the worst-case peak gain

of linear systems. Systems & Control Letters, 19:265–269, 1992.
[2] J. Carletta, R. Veillette, F. Krach, and Zhengwei F. Determining

appropriate precisions for signals in fixed-point iir filters. In Design
Automation Conference, 2003. Proceedings, pages 656–661, 2003.

[3] H. Dawood. Theories of Interval Arithmetic: Mathematical Foundations
and Applications. LAP Lambert Academic Publishing, 2011.

[4] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR:
A multiple-precision binary floating-point library with correct rounding.
ACM Transactions on Mathematical Software, 33(2):13:1–13:15, 2007.

[5] S. Gershgorin. Über die Abgrenzung der Eigenwerte einer Matrix. Bull.
Acad. Sci. URSS, 1931(6):749–754, 1931.

[6] N. J. Higham. Accuracy and stability of numerical algorithms (2. ed.).
SIAM, 2002.

[7] T. Hilaire, P. Chevrel, and J.F. Whidborne. A unifying framework for
finite wordlength realizations. IEEE Trans. on Circuits and Systems,
8(54):1765–1774, 2007.

[8] T. Hilaire and B. Lopez. Reliable implementation of linear filters with
fixed-point arithmetic. In Proc. IEEE Workshop on Signal Processing
Systems (SiPS), 2013.

[9] T. Kailath. Linear Systems. Prentice-Hall, 1980.
[10] U. Kulisch and V. Snyder. The exact dot product as basic tool for long

interval arithmetic. Computing, 91(3):307–313, March 2011.
[11] D. Lefebvre, P. Chevrel, and S. Richard. An H∞ based control design

methodology dedicated to the active control of longitudinal oscillations.
IEEE Trans. on Control Systems Technology, 11(6):948–956, 2003.

[12] J.A. Lopez, C. Carreras, and O. Nieto-Taladriz. Improved interval-
based characterization of fixed-point LTI systems with feedback loops.
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 26(11):1923–1933, 2007.

[13] V. Pan and J. Reif. Efficient parallel solution of linear systems. In
Proceedings of the Seventeenth Annual ACM Symposium on Theory of
Computing, STOC ’85, pages 143–152. ACM, 1985.

[14] S. M. Rump. New results on verified inclusions. In Accurate Scientific
Computations, Symposium, 1985, Proceedings, pages 31–69, 1985.

[15] S. M. Rump. Solution of linear systems with verified accuracy. Applied
numerical mathematics, 3(3):233–241, 1987.

[16] S. M. Rump. Reliability in computing: The role of interval methods
in scientific computing. chapter Algorithms for Verified Inclusions —
Theory and Practice, pages 109–126. Academic Press, 1988.

[17] S. M. Rump. Guaranteed inclusions for the complex generalized
eigenproblem. Computing, 42(2-3):225–238, September 1989.

[18] Z. Zhao and G. Li. Roundoff noise analysis of two efficient digital filter
structures. IEEE Trans. on Signal Processing, 54(2):790–795, 2006.

