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ABSTRACT
A consistent analysis of the filter design along with its fur-
ther implementation in fixed-point arithmetic requires a large
amount of work, and this process differs from one filter rep-
resentation to another. For the unifying purposes of such
flow, a Specialized Implicit Form (SIF) had been proposed
in [1].Various sensitivity and stability measures have been
adapted to it along with an a priori error analysis (quanti-
zation of the coefficients and output error). In this paper a
conversion algorithm for the widely used Lattice Wave Digi-
tal Filters (LWDF) to the SIF is presented, along with a finite
precision error analysis. It allows to compare fairly LWDF
to other structures, like direct forms and state-space. This is
illustrated with a numerical example.

Index Terms— Filter implementation, Lattice Wave Dig-
ital Filters, error analysis, fixed-point arithmetic.

1. INTRODUCTION

Most of control and signal processing algorithms are im-
plemented for application in embedded systems, which use
finite-precision arithmetic. Unfortunately, the quantization
of the coefficients and the roundoff errors in the computa-
tions lead to degradation of the algorithms. This makes the
implementation process tedious and error-prone, since no au-
tomatic tool exists for the filter-to-code transformation with
a rigorous error analysis. Moreover, the diversity of Infi-
nite Impulse Response (IIR) filter realizations (Direct Forms,
state-space, Wave, etc.) must be taken into consideration.
These realizations are equivalent mathematically but not any-
more in finite-precision arithmetic. Their structures make
some of them more sensitive to the quantization of the coef-
ficients, whereas some of them are very robust to roundoff
errors. Furthermore, each representation demands its own,
often difficult and time-consuming, analysis procedure.

For the unification of filter analysis, a Specialized Im-
plicit Form (SIF) was introduced in [1]. It allows to represent
any filter in a unified form and then to apply a rigorous sta-
bility/sensitivity and error analysis, such as transfer function
and pole sensitivity measures or output error. Error analysis is
based on rigorous algorithms, which compute error intervals
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for an implemented filter. Moreover, automatic Fixed-Point
code generation tool for the SIF was proposed in [2] and
is based on particular implementation of Sum-of-Products
(SoPs).
The complete flow of filter implementation using SIF is
shown in Figure 1. Since this process is unified, other real-
izations of the same filter may be simultaneously considered
and a fair comparison can be provided.
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Fig. 1: From transfer function to Fixed-Point code.

In this article, we consider Lattice Wave Digital Filters
(LWDF) as a target filter realization, which we convert to SIF.
We show some of the filter analysis measures available for SIF
and apply them on LWDF for further comparison with the
results of Direct Form I (DFI), ρ-Direct Form II transposed
(ρDFIIt [3]) and state-space realizations.

For that purpose, LWDF are recalled in Section 2. A
fixed-point arithmetic error analysis for the SIF is detailed in
Section 3 and a LWDF-to-SIF conversion algorithm is exhib-
ited in Section 4. Finally, a comparative example is given.

Notation: vectors are in lowercase bold, matrices are in
uppercase bold. All matrix inequalities are applied element-
by-element. Operator× denotes an entrywise matrix product;
bxc2 is the nearest power of 2 lower than x.

2. LATTICE WAVE DIGITAL FILTERS

LWDF is a class of recursive Wave Digital Filters that inherit
several good properties, such as stability for implementation
and possibility of suppression of parasitic oscillations. LWDF
can be either derived from analog reference filters [4] or using
explicit formulas [5].

The LWDF structure is highly modular and has a high de-
gree of parallelism, which makes them suitable for a VLSI
implementation. Their good stability qualities [4] make them
good candidates for adaptive filtering and Hilbert transform-
ers design [6].



LWDF is represented by two parallel branches, which re-
alize all-pass filters. These all-pass filters are composed of
cascaded first- and second-order symmetric two-port adap-
tors. Its data-flow diagram (DFG) is shown on Figure 2.
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Fig. 2: Data-flow diagram of a low-pass LWDF.

Each adaptor contains three adders and one multiplier.
According to [5], the adaptor coefficients γ may be guaran-
teed to fall into the interval −1 < γ < 1. In [4] it was pro-
posed to use Richards’ structures for adaptors, as on Figure
3.
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Fig. 3: Two-port adaptor structures, for which actual multi-
plier α is computed out of γ using Table 1.

Moreover, instead of multiplication by γ an easy-to-
implement multiplication by 0 < α 6 1/2 takes place in
each type of structure, as summarized in the Table 1.

Type γ range Value of α
1 1/2 < γ < 1 α = 1− γ
2 0 < γ 6 1/2 α = γ

3 −1/2 6 γ < 0 α = |γ|
4 −1 < γ < −1/2 α = 1 + γ

Table 1: γ to α conversion for different γ ranges.

It was shown in [4] that in order to make sure that only
one passband and only one stop-band occur, the orders of the
upper and lower branches must differ by one, such that the
overall order n of the filter is odd. The high-pass filter may
be obtained simultaneously by changing the sign of the all-
pass lower branch.

In [5] explicit formulas for LWDF transfer function de-
sign for several common filters such as Butterworth, Cauer

(elliptic) and Chebyshev were presented. However, LWDF
can realize all reference filters. Due to its good qualities,
LWDFs are considered in numerous different applications,
including studies on linear-phase structures and energy-
efficient structures [7]. However, all studies on lattice wave
structures implementation in finite word-length arithmetic
are performed a posteriori, i.e. when the implementation
parameters are known [8].These are commonly two- or three-
step algorithms that propose coefficients quantization scheme
based on solving optimization problems for infinite-precision
filter models and then adjustment of finite-precision filter.

In this work, however, we apply a more arithmetic ap-
proach on LWDF using SIF, which provides a priori bounds
on the coefficient’s quantization errors and on roundoff errors.
These error bounds permit different realizations comparison
on the filter design stage.

3. FIXED-POINT ARITHMETIC ERROR ANALYSIS

3.1. Specialized Implicit Framework

In order to encompass all the possible realizations for a
given transfer function the Specialized Implicit Framework
has been proposed in [1]. SIF is an extension of the state-
space realization, modified in order to allow chained Sum-of-
Products (SoP) operations. All the input-output relationships
with delays, computation order, multiplications by constants
and additions can be represented with the SIF. This macro-
scopic description is more suited for the analysis than a graph
relationship as it gives direct analytical formula for the finite
precision error analysis [1]. We consider here the Single In-
put Single Output (SISO) filters, but it can be easily extended
to Multiple-Inputs Multiple Outputs (MIMO) cases.

Denote u(k) and y(k) the input and output respectively.
Variables that are stored from one step to the other are in the
state vector x(k), while intermediate results are collected in
the vector t(k). Then, the SIF is the following system:

H




Jt(k + 1) = Mx(k) + Nu(k)
x(k + 1) = Kt(k + 1) + Px(k) + Qu(k)

y(k) = Lt(k + 1) + Rx(k) + Su(k)
(1)

Note that J must be lower triangular with 1 on its diago-
nal, so the first value of t(k + 1) is first computed, then the
second one is computed using the first and so on. The implicit
term Jt(k+1) naturally serves for preservation of the compu-
tation order specific for each realization. Its transfer function
H can be obtained analogously to the state-space realization.

Denote Z as a set of the SIF coefficients:

Z ,



−J M N
K P Q
L R S


 . (2)

Various filter analysis measures [1, 9, 10] have been ex-
plicitly introduced for this framework along with rigorous er-



ror analysis algorithms, some of which are described further
in this section.

3.2. Fixed-Point Arithmetic

In two’s complement Fixed-Point (FxP) arithmetic, a FxP
number x is represented by

x = −2mxm +

m−1∑

i=`

2ixi, (3)

where xi is the ith bit of x, and m and ` are the Most Signifi-
cant Bit (MSB) and Least Significant Bit (LSB) of x.

If a real non null constant c has to be approximated by a
w-bit FxP number, its MSB in most of cases is deduced from

m =
⌊

log2 |c|
⌋

+ 1 (4)

and then its LSB ` is deduced with ` = m − w + 1 (in some
special cases eq. (4) may be inaccurate, see [11] for the com-
plete algorithm). If the round-to-nearest mode is chosen for
the conversion, then c is approximated with an absolute error
∆c such that |∆c| 6 2`−1.

3.3. Coefficient’s quantization

Obviously, after implementation the coefficients Z will be
modified into Z + ∆Z, where the errors ∆Z depend on the
coefficients values and word-lengths, according to (4). In or-
der to evaluate how the filter characteristics may be modified
by the quantization of the coefficients, sensitivity-based mea-
sures are usually used [12].

The sensitivity of the transfer function H with respect to
the coefficients Z is given by ∂H

∂Z . Analytical form of this
measure is usually developed specifically for each realization.
However, once obtained for SIF [1], it can be applied to any
realization. Unfortunately, this commonly used measure is
not fair and does not reflect how the coefficients’ quantiza-
tion changed the transfer function H into H + ∆H since the
absolute error of the coefficients may not all have the same
magnitude order.

For that purpose, a stochastic sensitivity-based measure
has been proposed and developed with respect to FxP con-
siderations in [9]. Here, quantization error ∆Zij of the co-
efficient Zij is considered as a random variable, uniformly
distributed in [−2`Zij−1 ; 2`Zij−1 ] where `Zij

is the LSB of
the Zij . Then, the error transfer function ∆H can be seen as
a transfer function with random variables as coefficients. Its
second-order moment is defined as

σ2
∆H ,

1

2π

∫ 2π

0

E
{∣∣∆H

(
ejω
)∣∣2
}
dω, (5)

where E{.} is the expectation operator. It reflects how much
the transfer function H has changed due to the quantization.
From [9], it can be evaluated with

σ2
∆H =

∥∥∥∥
∂H

∂Z
×Ξ

∥∥∥∥
2

2

(6)

where

Ξij ,

{
0 if Zij ∈ {0,±1}
2
−wZij

+1

√
3
bZijc2 otherwise

(7)

and wZij is the word-length fixed to represent Zij . Thus,
σ2

∆H captures more information on the transfer function error.
If all the coefficients have the same word-length, then a

normalized transfer function error measure [9] is defined by

σ̄2
∆H ,

∥∥∥∥
∂H

∂Z
× bZc2

∥∥∥∥
2

2

. (8)

This normalization is useful for a concrete realization analysis
on the design stage, when word-lengths are not known.

The same approach was applied for the poles {λi} of the
systems, or more interestingly to their moduli |λi| in order
to ensure filter’s stability after quantization. The poles mod-
uli sensitivity (w.r.t. the coefficients) is measured with ∂|λi|

∂Z
and detailed in [12]. For the same reason as the transfer func-
tion sensitivity, it was developed as the second-order moment
of the random variables ∆ |λi| and analogous to (6) the pole
error σ2

∆|λ| was introduced.
Likewise to (8) the word-length independent normalized

error pole measure σ̄2
∆|λ| may be computed [12].

3.4. Roundoff errors

In addition to the quantization of the coefficients, the roundoff
errors occur during the computations. The Sum-of-Products
operations required to compute each line of (1) cannot be ex-
actly implemented due to the binary-point alignments and the
final fixed-point quantizations.

If some extra guard bits are added, then the SoPs can be
performed with faithful rounding of the last bit, i.e. with an
error ε such that |ε| 6 2` where ` is the LSB of the result [10].

Considering these errors leads to the following imple-
mented filterH∗:
Jt∗(k + 1) = Mx∗(k)+Nu(k)+εt(k)
x∗(k + 1) = Kt∗(k + 1)+Px∗(k) +Qu(k)+εx(k)

y∗(k) = Lt∗(k + 1) +Rx∗(k) +Su(k) + εy(k)
(9)

where εt(k), εx(k) and εy(k) are the roundoff errors due to
the FxP computations of all the SoPs.

Performing the difference between an exact (1) and im-
plemented filter (9), the output error ∆y(k) , y∗(k) − y(k)
can be seen as the output of the roundoff error vector ε(k) ,(
εt
>(k), εx

>(k), ε>y (k)
)>

through a (MIMO) error filter de-
noted Hε, as shown in Figure 4. Hε can be easily described
by state-space representation [11].
The worst possible output error ‖∆y‖∞ , sup

k>0
|∆y(k)| can

be deduced from a bound ‖ε‖∞ on the error vector ε(k) with:

‖∆y‖∞ = 〈〈Hε〉〉 ‖ε‖∞ , (10)
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Fig. 4: The implemented filter can be seen as the exact filter
perturbed by the roundoff errors.

where 〈〈Hε〉〉 is the Worst Case Peak Gain matrix of the
MISO filter Hε, i.e. the L1-norm of its impulse response. In
[13], the authors showed how to evaluate this matrix at any
arbitrary precision.

The error vector is bounded by ‖ε‖∞ 6 2`txy , where `txy
is the vector of the LSBs of the variables t, x and y. It can be
deduced (`txy = mtxy −wtxy + 1) from the word-lengths
wtxy and the MSBsmtxy of the variables t, x and y.

The word-lengths wtxy are an implementation choice
(determined by the hardware architecture used for the im-
plementation), whereas mtxy may be determined from the
bound ‖u‖∞ of the input u(k):

mtxy =
⌊

log2 (〈〈Hu〉〉 ‖u‖∞)
⌋

+ 1. (11)

where Hu is the specific filter with takes u(k) as input and
returns t, x and y, and 〈〈Hu〉〉 its Worst-Case Peak-Gain. An
explicit state-space form of Hu can be easily obtained [11].

Note that the the Worst-Case Peak-Gain measure used in
(11) guaranties that no overflow occurs on t, x and y. It is
similar to a scaling.

Moreover, if the largest possible value of the input is a
power-of-2, then substituting (11) into (10) leads to a normal-
ized output error bound (independent of word-lengths analo-
gously to Section 3.3):

∆y , 〈〈Hε〉〉 b〈〈Hu〉〉c2 . (12)

4. LWDF-TO-SIF CONVERSION ALGORITHM

Due to the high modularity of the LWDF, the conversion be-
tween its DFG and SIF is not difficult. As seen on Figure 2,
LWDF consists of two branches, and each branch is a cas-
cade of stages. Each stage in its turn may be considered as a
cascade of subsystems of two types, as shown on Figure 5.
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Fig. 5: A stage is considered as cascade of subsystems of type
A (Subfig. a) or type B (Subfig. b).

Therefore, the basic brick for cascade sequence is actually
not a simple adaptor but a two-port adaptor with one output
delayed (Type A: Figure 5a) and a 1-input/1-output adaptor
with delay (Type B: Figure 5b). Then, given filter’s coeffi-
cients γ, the conversion algorithm can be divided into follow-
ing steps:

Step 1: Deduce SIF representation (matrix Z) for each sub-
system according to its γ value;

Step 2: Cascade subsystems into stages;

Step 3: Cascade stages into branches;

Step 4: Regroup two branches SIFs into final filter.
The first step can be easily done by applying SIF nota-

tion to the subsystem DFG. Two subsystems per each adaptor
structure must be considered, overall 8 basic bricks. For ex-
ample, for −1 < γ < 1/2 the structures to be converted into
SIF can be described with DFGs on Figure 6.
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Fig. 6: (a) Type A subsystem with adaptor of type 4. (b) Type
B subsystem with adaptor of type 4.

Applying SIF definition (1), we can deduce that SIFs ZA
and ZB for subsystems shown on Figure 6 are:

ZA ,

 −JA MA NA

KA PA QA

LA RA SA

 =


−1 0 0 1 1

α −1 0 0 1

0 1 0 0 0

−1 1 0 0 0

0 0 1 0 0

 (13)

ZB ,

 −JB MB NB

KB PB QB

LB RB SB

 =


−1 0 1 −1

α −1 1 0

0 −1 0 0

−1 1 0 0

 (14)

Sequential cascading of two SIFs can also be expressed
explicitly. For example, if two SIFs are determined with ma-
trices {J1,K1, . . . ,S1} and {J2,K2, . . . ,S2} respectively,
then the cascaded SIF may be obtained with:

Z =



−J1 0 0 M1 0 N1

L1 −I 0 R1 0 S1

0 N2 −J2 0 M2 0

K1 0 0 P 1 0 Q1

0 Q2 K2 0 P 2 0

0 S2 L2 0 R2 0


. (15)

Notate, that even on the first step of conversion the ma-
trices ZA and ZB are sparse. Each application of cascade
formula (15) would produce an even more sparse matrix.

The complete algorithm (for all the subsystems) is not
given here dut to lack of space.

5. NUMERICAL EXAMPLES AND COMPARISONS

The following example is based on the LWDF coefficients,
which were obtained with Lattice Wave Digital Filters1 tool-

1http://ens.ewi.tudelft.nl/˜huib/mtbx/index.php



box for Matlab. This toolbox is based on explicit formulas
introduced in [5]. However, the LWDF-to-SIF conversion al-
gorithm requires only the γs, therefore does not depend on
software providing coefficients. The FWR toolbox2 for Mat-
lab was used for the SIF analysis.

A Matlab-generated low-pass 5th order Butterworth filter
with cutoff frequency 0.1 was considered. Four realizations
of this transfer function were considered: LWDF, balanced
state-space, Direct Form I and ρ Direct Form II transposed
(ρDFIIt [3]). Only the normalized (i.e. input-width indepen-
dent) versions of measures introduced in Section 3 were used.

The result SIF for the considered LWDF structure is a
sparse 22 × 22 matrix shown below. It has only three types
of non-zero elements: adaptor coefficients αi and plus/minus
ones represented by filled and contour circles respectively:

Z =

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(16)

1/2

↵2

↵3

↵4

↵5

↵1

As described in [14, 3], the ρDFIIt is parametrized by n
extra parameters. It can be a subject of multi-criteria opti-
mization. For this example a tradeoff function minimizing
weighted sum of normalized transfer function and pole errors
was used. Excellent results may be observed in Table 2.
However, Direct Form I showed to be very ill-conditioned for
the considered filter, and its pole error cannot be computed.

Thanks to the minimal number of coefficients, the LWDF
approaches in its normalized transfer function error the opti-
mized ρDFIIt. The specific alternating distribution of LWDF
poles [8] leads to good results in pole error measure. Nor-
malized output error is, however, quite large because it was
not designed to minimize the propagation of roundoff errors.
Therefore, ρDFIIt may be a good alternative. To provide a
consistent implementation comparison a code optimization
and generation chain FiPoGen [10] + FloPoCo3 is required.

The state-space realization chosen is a balanced state-
space. It is expectantly good at output error, but more sensi-
tive to quantization errors (it has much more coefficients).

6. CONCLUSION

Various studies on LWDF have been introduced over the
years. However, existing computational error analysis are
dedicated to that particular structure and do not really permit
comparisons. The conversion from LWDF to SIF permits

2https://gforge.inria.fr/projects/fwrtoolbox/
3http://flopoco.gforge.inria.fr/

to apply numerous classical and novel sensitivity measures
upon any LWDF realization and any other.
Further work will consist of using the Fixed-Point Genera-
tor [10] capabilities to produce optimal (with respect to either
implementation cost and some error criteria) FxP code for
various hardware and software architectures.

Realization size(Z) coeff. σ̄2
∆H σ̄2

∆|λ| ∆y

LWDF 22×22 5 0. 3151 0.56 122.9
state-space 6× 6 36 1.15 5.75 23.33

ρDFIIt 11×11 11 0.09 0.45 94.3
DFI 12×12 11 1.42e+6 - 7.961

Table 2: Different realizations comparison.
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