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Pitch

Residue Number System offer a good trade off for FIR
implementation

e Small
e Fast
e Low power

In DSP and control applications IIR are more widely used

Is it a good strategy for IR ?
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e —
IR Filter

A 1IR! filter is defined by its transfer function (input-output
relationship in frequency domain)

bo + blzfl + b2272 + ... bnzfn
H(z) = 1+ az 1t - n
aiz -+ az“+...+apz

where the a; and b; are the coefficients of the filter.
Note that z~! represents the delay operator.

() [0

Infinite Impulse Response
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e —
IR Filter

A 1IR! filter is defined by its transfer function (input-output
relationship in frequency domain)

H(2) bo+ bzt + bz 2+... bz "
Z) =
14+ a1zt +az724 ... +apz7"

where the a; and b; are the coefficients of the filter.
Note that z~! represents the delay operator.
In time-domain, the output at time k can be computed by

Direct Form |

y(k) =" biu(k —i) = ajy(k—i)
i=0 i=1

Infinite Impulse Response
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Residue Number Systems

Integer representation.

A base of j relatively primes:
Br = (my,my,...,mp)

m

The RNS representation of an integer X is:

Xrns = (X1, X2, ..., Xn)

x1 = X mod my
X2 = X mod my

X, = X mod m,,

Chinese Remainder Theorem: An unique solution in [a,a + M|

M = f[m,-
i=1
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Operations

e Additions, multiplications and substractions with no carry
propagation:

X®Y modM=((x1®y1) mod my,...,(xn © yn) mod mp)

e Operations on small numbers
e Modular operation can be simplified using specific bases

Example : Base {3,7,13,19}

X = 147 Y =31
Xens = {0,0,4,14}  Ygrns = {1,3,5,12}

Xens + Yens =4 [0+1|s, |0+3]7, [4+513, |14+12];10 }
={ 1, 3, 9, 7 }
= 178

XRNS X YRNS = { |O X 1|3 9 |0 X 3|7 9 |4 X 5|13 9 |14 X 12|1g }
={ o, 0, 7, 16 }
= 4557
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Difficulties

Example : Base {3,7,13,19}
X =147
XRrns =

e No easy magnitude estimation
e No easy overflow detection

e Conversions

Conversion via MRS

Y =31
{0,0,4,14} Ygns = {1,3,5,12}

Conversion via CRT
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Technological issues

Targetted technology : Xilinx Virtex 4 FPGA
e A specific mechanism: Fast Carry
S propagation

e Carry ripple adder more efficient for
medium width
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Technological issues

Targetted technology : Xilinx Virtex 4 FPGA
e A specific mechanism: Fast Carry
S propagation

e Carry ripple adder more efficient for
Y FyY rFarn

Rl bl bl Rl medium width
FRIFTFTI PN
I

FAFEFY PN Key technological issue
Bl bl bl R _
FYFYFYEY Small delay increase for larger adders

Ll ll bl Ld
| 5 bits 15 bits
Delay (ns) | 6.6 7.1
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FPGA implementation

¢ Specific modular base {2" —1,2",2" 4+ 1}
e Modular additions

e Modular constant multiplication

e Scaling
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FPGA implementation

e Specific modular base {2" — 1,27, 2" 4 1}
¢ Modular additions

e Modular constant multiplication

e Scaling

(x+y) mod m

modulo 2" — 1 addition

Most significant bit

modulo 2" 4 1 additions
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-
FPGA implementation

e Up to 7 bits: lookup

e Specific modular base {2" —1,27,2" 4+ 1} :]:L:Z;Iy same delay as
o Modular additions an adder

e Modular constant multiplication e Over 7 bits: shift and
e Scaling add-like algorithm

delay similar up to 5
adders
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-
FPGA implementation

e Specific modular base {2" — 1,27, 2" + 1}
e Modular additions

e Modular constant multiplication

e Scaling

Up to 7 bits: lookup tables
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-
FPGA implementation

e Specific modular base {2" — 1,27, 2" + 1}
e Modular additions

e Modular constant multiplication

e Scaling

Over 7 bits: shift and add-like algorithm
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Scaling is necessary

Direct Form |
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- _______________________________________
DFI 1IR in RNS on FPGA...

Filter | Scaling Mul Add | RNS WL FP WL
(bits) (bits)
DFI 13 13 12 13 36

L delay (ns) L area (slices) ‘

fixed-point 20.61 1071
RNS 54.76 3405

DFI

Because
e FPGA technology gives no gain in splitting wordlength
e Scaling is costly

o Wordlength too large to implement multiplication trough tables
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-
pDFIIt

Hopefully, some other algorithms are possible.
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-
pDFIIt

Hopefully, some other algorithms are possible.
i.e. it is possible to reparametrized the transfer function as

B+ Bior(2) + -+ Bro10,11(2) + Bron (2)
1+ algfl(z) +... 4+ an,lg:i’ﬂ(z) + a,,g;l(z)

H(z)

with
Z—"i

]

1
0i :z»—)Hpj(z) and p;: z+—
j=1

for some (p;), (4).
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-
pDFIIt

Hopefully, some other algorithms are possible.
i.e. it is possible to reparametrized the transfer function as

B+ Bior(2) + -+ Bro10,11(2) + Bron (2)
1+ algfl(z) +... 4+ an,lg:i’ﬂ(z) + a,,g;l(z)

H(z)

with
Z—"i

]

1
0i :z»—)Hpj(z) and p;: z+—
j=1

for some (p;), (4).

It uses 3n+ 1 parameters (instead of 2n + 1) but is very efficient
numerically
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-
pDFllt advantage
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Figure: Relative difference between the ideal transfer function and the
fixed-point implemented transfer function
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-
p-Direct-Form I

Then a Direct Form can be use with cascaded pi_l—operators.
u(k)
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p-Direct-Form I

Then a Direct Form can be use with cascaded pi_l—operators.
u(k)

i s v e
+>_’ Pn + > /’z+1 “"\"—, W2 -+ P1 -+
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Results

L delay (ns) L area (slices) ‘

DE| fixed-point 20.61 1071
RNS 54.76 3405
fixed-point 16.37 206
pDFIlt | RNS tables 17.03 1167

Multiplications are more efficient trough tables

FPGA technology gives no gain on the size and delay of RNS
adders

Scaling in RNS is costly

New filter form gives improvement in delay and area
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Conclusion - Discussion

New efficient forms

Forms with less scaling

CMOS technology would give better results for RNS
implementations

e Using larger base to benefit the parallelism gain. For instance
{ok — 1,2k 4 1,2k —2k=r 1 ok _Dk=r 41}
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