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@ Evaluate the impact of the quantization of the embedded
coefficients

o Compare various realizations and find an optimal one
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Origin of the degradation

The deterioration induced by the FWL implementation comes
Low from .

Sensitivity

Realizations @ Quantization of the involved coefficients
— parametric errors

@ Roundoff noises in numerical computations
— numerical noises

Only the deterioration induced by the quantization of
coefficients is considered here.




Equivalent realizations
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Y«

Let's consider a transfer function H(z) and one of its
realization (Aq, Bg, Cq, Dq)

H(z) = Cq(zl — Aq)™'Bq + Dq

Aqu + Bq Uy
Cqu + Dy Uy

with gXj = Xk+1



8] Equivalent realizations

Let's consider a transfer function H(z) and one of its
realization (Aq, Bg, Cq, Dq)

Lo H(z) = Cy(zl — Ag) ' By + Dy
ensitivity
Realizations

with gXj = Xk+1

gXk = AgXk + BgUx
Y Cqu + Dq Uy

The realizations of the form (T~1A, T, T~1B,, C,T, D), with
T a non-singular matrix, are all equivalent in infinite precision.
They are no more in finite precision.
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Gevers and Li (1993) have proposed a measure of the
sensitivity of the transfer function with respect to the
coefficients A, B and C

Sensitivity
Realizations

s IOH|P  [loH|P  ||oH|
M. = 54|, T 28|, T |ac




Transfer function sensitivity measure

Gevers and Li (1993) have proposed a measure of the
sensitivity of the transfer function with respect to the
coefficients A, B and C

Low
Sensitivity
Realizations

s |[OH|? | |oH | ||oH|]?
M. = 54|, T 28|, T |ac

The optimal design problem consists in finding

argmin My, (T AT, T~'B,CT, D)

Tnon singular
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The need of a unifying framework
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Various implementation forms have to be taken into
consideration

@ shift-realizations

O-realizations

Implicit
State-Space
Framework

observer-state-feedback

°
°

@ direct form | or Il

@ cascade or parallel realizations
°

etc...
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8] The need of a unifying framework

In order to encompass all these implementations, we have
proposed a specialized implicit state-space realization to be
used as a unifying framework :

Implicit
StisleEEee @ macroscopic description of a FWL implementation
Framework

@ more general than previous realizations

@ more realistic with regard to the parameterization

o directly linked to the in-line computations to be performed




Implicit State-Space Framework

The control algorithm is described with

Q J Tii1=MX+ N.Ug

Implicit 9 g 5
State-Space Intermediate variables computation

Framework
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Implicit State-Space Framework

The control algorithm is described with

(1] J.Tk+1 = M.X, + N.Uy
Q@ Xiy1=K.Tip1+ P.Xie + Q.Ux
Q Yi=LTi1+RXk+S.Ug

Implicit g
State Space Output computation

Framework
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RSl The control algorithm is described with

Q J Tyi1=MXe+ N.Ug
Q Xit1=K.Typ1+ P.Xk+ Q. Uk
Q Y= L.Tk+1 + R. X + S.Ux

Implicit
State-Space

Framework /

Implicit State-Space Framework

J 0 0\ [Tz 0 M N\ [Tk
K 1 0| [Xea|l=(0 P Q@] [X
L 0 I Y 0o R s/ \u




Intermediate variables

The intermediate variables introduced allow to

@ make explicit all the computations done

Implicit

State-Space @ show the order of the computations
Framework

@ express a larger parameterization
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Bl Examples

A realization with the J-operator is described by :

0Xx = AsXk+ BsUx s2 q—1
Y = GCsXi+ DsUy A
Implicit

State-Space
Framework



A realization with the J-operator is described by :

0Xx = AsXk+ BsUx 54 gt
Yi = CsXi+ DsUyg A
'_c,"t’apt';fist,,ace and it corresponds to the following implicit state-space :
Framework
/ 0 0 Tk+1 0 A5 B(S Tk
—Al 1 0 Xewr1 | =10 [ O Xk

0 0 |/ Yk 0 G Dy Uk
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Ap)/\(k + BpUk + Kf(Yk — Cp),\(k)
U = — KXk + Q(Yk — CoXk)

where (A, By, Cp) corresponds to the plant system
Implicit and K., Kr and Q are the controller's parameters.

State-Space
Framework



Examples

The Observer State-Feedback

{ )A<k+1 = Ap)/\(k j— BpUk + Kf(YkA— Cp),\(k)
U = — KXk + Q(Yk — CoXk)

where (A, By, Cp) corresponds to the plant system
Implicit and K., Kr and Q are the controller's parameters.

State-Space
Framework




Examples

The Observer State-Feedback

{ Xirr = ApXi+ BoUn + Ke(Vi — C.50)
Uc = — KX+ QY — CoX)

where (A, By, Cp) corresponds to the plant system
Implicit and K., Kr and Q are the controller's parameters.

State-Space
Framework




Examples

The Observer State-Feedback

{ )A<k+1 = Ap)/\(k j— BpUk + Kf(YkA— Cp),\(k)
U = — KXk + Q(Yk — CpXk)

where (A, By, Cp) corresponds to the plant system
Implicit and K., Kr and Q are the controller's parameters.

State-Space
Framework




Examples

The Observer State-Feedback

{ )A<k+1 = Ap)/\(k j— BpUk + Kf(YkA— Cp),\(k)
U = — KXk + Q(Yk — CoXk)

where (A, By, Cp) corresponds to the plant system
Implicit and K., Kr and Q are the controller's parameters.

State-Space
Framework




CAO'06

T. Hilaire,
P |
J.P. Clauzel

ApXi + ByUi + Ke(Yi — CoX)
Uk = — KCXk =+ Q( Yk — CpXk)

o where (A, By, Cp) corresponds to the plant system
SEES S and K., Kr and Q are the controller's parameters.

Framework

/ 0 0\/Tku1 0 —(QRG+K) Q\/T«
=By I O Xky1 | =10 (A —KeC)  Kr || Xk
10 1)\ u 0 0 o M\,
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a1l Transfer function sensitivity measure

The sensitivity of the realization considered according to each
coefficient involved

First sensitivity measure

ML 2
L, —
TF Sensitivity

.12
> oF
X
Xe{J,K,L,M,N,P,Q,R,S} 2
Measure with /:I(Z)Né H(z) — D = C(ZI — A)_]-B-

H is strictly proper
aD

oX

is independent of the state-space coordinate




B Transfer function sensitivity measure

@ Trivial parameters have not to be considered

e 0, =1 : in the implicit form, numerous coefficients are null
or equal to 1

e Some coefficients (power of 2, ...) can be exactly
implemented
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B Transfer function sensitivity measure

@ Trivial parameters have not to be considered

e 0, =1 : in the implicit form, numerous coefficients are null
or equal to 1

e Some coefficients (power of 2, ...) can be exactly
implemented

@ So, to a realization matrix X (J, K,..., S), a weighting

matrix Wy is required
TF Sensitivity
Measure

0 if X;; could be exactly implemented

(WX)U - {1 else




Transfer function sensitivity measure

Weighted sensitivity measure in SISO

For a SISO transfer function H, with realization
R=(J,K,LMN,P, Q,R,S), the sensitivity measure is

2

My 2 D

Xe{J,K,L,M,N,P,Q,R,S}

a_XXWX

2

TF Sensitivity
Measure




Transfer function sensitivity measure

Weighted sensitivity measure in SISO

For a SISO transfer function H, with realization
R=(J,K,LMN,P, Q,R,S), the sensitivity measure is

= 2
oH
W 4
P SRS e
Xe{J,K,L,M,N,P,Q,R,S} 2
TF Sensitivity
Measure It can also be express as
MY = ﬁxWZ with Z2 | K P Q@
2 L R S
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1 Transfer function sensitivity measure

In the MIMO case, g—)"(’ and Wy are not the same size anymore.
It is possible to introduce overall sensitivity matrices defined by
SH\ L | oH
X | 10X

i

2

TF Sensitivity

Measure



Transfer function sensitivity measure

CAO'06 ~
- In the MIMO case, g—)"(’ and Wy are not the same size anymore.

| e It is possible to introduce overall sensitivity matrices defined by

AN
X )
1J

Weighted sensitivity measure in MIMO

WELEECE the sensitivity measure is defined by

oH
8X,-J

2

Measure

oH

MY = 57 < Wz

F

where |.|| is the Frobenius norm.




Transfer function sensitivity measure

g—g or % can be expressed thanks to the following transfer

functions

Hi(z) = C(zl,— At
Hy(z) = (zl,—A)"!B
Hi(z) = Hi(z)KJ P4 L1
Hy(z2) JIMHy(z) + J7IN

TF Sensitivity
Measure

More details about this technical point in the paper.
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8 Active Control of Vehicle Longitudinal Oscillations

The example used here is an active control of longitudinal
oscillations studied by (D. Lefebvre - PSA / P. Chevrel - EMN).

The first torsional mode (resonance in the elastic parts) which
produces unpleasant (0 to 10 Hz) longitudinal oscillations of
the car (shuffle), can be reduced by means of a controller
acting on the engine torque.
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Active Control of Vehicle Longitudinal Oscillations

The model of the powertrain was modeled in continuous-time
form, and a continuous-time H., optimal controller was
designed (D. Lefebvre - PSA / P. Chevrel - EMN).

The discretized controller is defined by the transfert function

_ —0.2142'0 +1.3322° — 3.40225 + 4.26527 — 1.8032° — 2.232° + 4.1052* — 3.0722% 4 1.2852% — 0.2948z + 0.02914
T 210-6.20527 + 16.342° — 23.1427 + 17.5126 — 3.822% — 5.54527 4 6.3232% — 3.2942% 4 0.9679z — 0.1328

H(z)



Classical State-Space

We can first study classical state-space realizations.
Zn=1\|. Ay Bp
Co Do
And we can consider each realization

Iy Iy
Z(T) = Tt Z T

I I

with T non singular



8] Classical State-Space

The optimal design problem, for the classical state-space,
consists in finding

Topt = arg min MX;/ (Z(T))

T non singular

This can be achieved thanks to a global optimization
algorithm : the Adpative Simulated Annealing (ASA).



Classical State-Space

The optimal design problem, for the classical state-space,
consists in finding

Topt = arg min MX;/ (Z(T))

T non singular

This can be achieved thanks to a global optimization
algorithm : the Adpative Simulated Annealing (ASA).

realization ‘ M‘a ‘ Nb parameters ‘
companion form | 1.78e+14 20
balanced form 81.44 120

optimal form 5.99 120




State-Feedback-Observer structure

P il

J.P. Clauzel { — Ap)A<k _|_ BpUk + Kf(Yk - Cp)?k)
U = —KXi + Q(Yk — CoXy)

It exists many equivalent state-feedback-observer realizations,
using different state-feedback and observer gains.
They are all linked by Riccati equations.

In this example, 120 realizations are admissible. They
correspond to different partitions of the closed-loop poles
between state-feedback and observer dynamics.



State-Feedback-Observer structure

For the first observer-state-feedback form

I 0 -G I

(o 0 (R) ()

Z=| (=K —Bp) Ap 0

(© - 0 0

we can evaluate the sensitivity :

@ large diversity of numerical conditionning

° Mﬂ/ vary from 1.358e+2 to 3.797e+8

@ we can choose the optimal partition (different from the
usual partition)



State-Feedback-Observer structure

For the second observer-state-feedback form

° Mﬂ/ vary from 1.423e+2 to 3.798e+8

@ results are similar to the first form (the best partitions for
the first form are the best for the second)
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&1 Conclusions and Perspectives

@ Implicit State-Space as a Unifying Framework
@ A transfer function sensitivity measure

@ optimal design on various forms

Perspectives

@ Other structurations to study (g/d mixed realizations, ...)

@ Multi-criteria optimization (Roundoff noise gain, stability
related measure, ...)

Conclusion

@ Toolbox to solve theses problems
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