

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Pole Sensitivity Stability Related Measure of FWL Realizations with the Implicit State-Space Formalism

T. Hilaire^{1,3} P. Chevrel^{1,2} J.P. Clauzel³

¹IRCCyN UMR CNRS 6597 NANTES FRANCE

²École des Mines de Nantes NANTES FRANCE

³PSA Peugeot Citroën LA GARENNE COLOMBES FRANCE

ROCOND'06 - 5-7 July 2006 - Toulouse France

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

- A pole sensitivity stability related measure
- Implicit State-Space Framework
- Pole Sensitivity Measure
- Optimal realization
- Conclusion

- Implementation of Linear Time Invariant controllers
- Finite Word Length context

Motivation

• Evaluate the impact of the quantization of the embedded coefficients

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

• Compare various realizations and find an optimal one

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

- Implementation of Linear Time Invariant controllers
- Finite Word Length context

Motivation

• Evaluate the impact of the quantization of the embedded coefficients

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

• Compare various realizations and find an optimal one

Outline

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

1 A pole sensitivity stability related measure

Macroscopic representation of algorithms through the implicit state-space framework

3 Extension of the pole-sensitivity stability related measure

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

5 Conclusion and Perspectives

Outline

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

A pole sensitivity stability related measure

Macroscopic representation of algorithms through the implicit state-space framework

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

pace

4 Optimal realization

5 Conclusion and Perspectives

FWL degradation

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Origin of the degradation

The deterioration induced by the FWL implementation comes from :

- Quantization of the involved coefficients
 - → parametric errors
- Roundoff noises in numerical computations → numerical noises

Only the deterioration induced by the quantization of coefficients is considered here.

FWL degradation

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Origin of the degradation

The deterioration induced by the FWL implementation comes from :

- Quantization of the involved coefficients
 - → parametric errors
- Roundoff noises in numerical computations
 - → numerical noises

Only the deterioration induced by the quantization of coefficients is considered here.

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

T-

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Let's consider a discrete plant ${\mathcal P}$

$$\sum_{p=1}^{n} \begin{cases} X_{k+1}^{p} = A_{p}X_{k}^{p} + B_{p}(R_{k} + Y_{k}) \\ U_{k} = C_{p}X_{k}^{p} \end{cases}$$

and a LTI controller $\ensuremath{\mathcal{C}}$

$$C\left\{\begin{array}{rcl} X_{k+1} &=& AX_k + BU_k \\ Y_k &=& CX_k + DU_k \end{array}\right.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

The realizations of the form $(T^{-1}AT, T^{-1}B, CT, D)$, with T a non-singular matrix, are all equivalent in infinite precision. They are no more in finite precision.

The degradation of the realization depends on the realization.

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Let's consider a discrete plant ${\mathcal P}$

$$\mathcal{P} \left\{ \begin{array}{rcl} X_{k+1}^{p} &=& A_{p}X_{k}^{p} + B_{p}(R_{k} + Y_{k}) \\ U_{k} &=& C_{p}X_{k}^{p} \end{array} \right.$$

and a LTI controller $\ensuremath{\mathcal{C}}$

$$C \begin{cases} X_{k+1} = AX_k + BU_k \\ Y_k = CX_k + DU_k \end{cases}$$

The realizations of the form $(T^{-1}AT, T^{-1}B, CT, D)$, with T a non-singular matrix, are all equivalent in infinite precision. They are no more in finite precision. The degradation of the realization depends on the realization.

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

When quantized, the parameters $X \triangleq \begin{pmatrix} D & C \\ B & A \end{pmatrix}$ are changed in $X + \Delta X$ and the closed-loop system can became unstable.

Let's denote $(\lambda_k(\bar{A}(X)))_{1\leqslant k\leqslant l}$ the eigenvalues of the closed-loop system

$$\begin{bmatrix} \bar{X}_{k+1} &= \bar{A}\bar{X}_k + \bar{B}R_k \\ U_k &= \bar{C}\bar{X}_k \end{bmatrix}$$
(1)

(日)

with

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

When quantized, the parameters $X \triangleq \begin{pmatrix} D & C \\ B & A \end{pmatrix}$ are changed in $X + \Delta X$ and the closed-loop system can became unstable.

Let's denote $(\lambda_k(\bar{A}(X)))_{1\leqslant k\leqslant l}$ the eigenvalues of the closed-loop system

$$\begin{aligned} \bar{X}_{k+1} &= \bar{A}\bar{X}_k + \bar{B}R_k \\ U_k &= \bar{C}\bar{X}_k \end{aligned} (1)$$

with

$$\bar{A} \triangleq \begin{pmatrix} A_p + B_p D C_p & B_p C \\ B C_p & A \end{pmatrix}$$
$$\bar{B} \triangleq \begin{pmatrix} B_p \\ 0 \end{pmatrix} \bar{C} \triangleq \begin{pmatrix} C_p & 0 \end{pmatrix}$$
(2)

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Chen, Wu, Li,... (2000-2005) have proposed a pole-sensitivity measure defined by

$$\mu(X) \triangleq \min_{1 \leq k \leq r} \frac{1 - \left|\lambda_k(\bar{A}(X))\right|}{\sqrt{N\Psi_k}}$$

with N is the number of non-trivial elements in X (non-zero elements in ΔX) and Ψ_k is the pole sensitivity of the closed-loop with respect to the parameters :

$$\Psi_{k} \triangleq \sum_{i,j} (W_{X})_{i,j} \left| \frac{\partial \left| \lambda_{k}(\bar{A}(X)) \right|}{\partial X_{i,j}} \right|^{2}$$

 W_X is the weighting matrix associated to the realization matrix X, defined by

$$(W_X)_{i,j} = \begin{cases} 0 & \text{if } X_{i,j} \text{ is exactly implemented} \\ 1 & \text{if not} \end{cases}$$

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Chen, Wu, Li,... (2000-2005) have proposed a pole-sensitivity measure defined by

$$\mu(X) \triangleq \min_{1 \leq k \leq r} \frac{1 - \left|\lambda_k(\bar{A}(X))\right|}{\sqrt{N\Psi_k}}$$

with N is the number of non-trivial elements in X (non-zero elements in ΔX) and Ψ_k is the pole sensitivity of the closed-loop with respect to the parameters :

$$\Psi_{k} \triangleq \sum_{i,j} (W_{X})_{i,j} \left| \frac{\partial \left| \lambda_{k}(\bar{A}(X)) \right|}{\partial X_{i,j}} \right|^{2}$$

 W_X is the weighting matrix associated to the realization matrix X, defined by

$$(W_X)_{i,j} = \begin{cases} 0 & \text{if } X_{i,j} \text{ is exactly implemented} \\ 1 & \text{if not} \end{cases}$$

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Chen, Wu, Li,... (2000-2005) have proposed a pole-sensitivity measure defined by

$$\mu(X) \triangleq \min_{1 \leq k \leq r} \frac{1 - \left|\lambda_k(\bar{A}(X))\right|}{\sqrt{N\Psi_k}}$$

with N is the number of non-trivial elements in X (non-zero elements in ΔX) and Ψ_k is the pole sensitivity of the closed-loop with respect to the parameters :

$$\Psi_{k} \triangleq \sum_{i,j} (W_{X})_{i,j} \left| \frac{\partial \left| \lambda_{k}(\bar{\mathcal{A}}(X)) \right|}{\partial X_{i,j}} \right|^{2}$$

 W_X is the weighting matrix associated to the realization matrix X, defined by

$$(W_X)_{i,j} = \begin{cases} 0 & \text{if } X_{i,j} \text{ is exactly implemented} \\ 1 & \text{if not} \end{cases}$$

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

• the measure is such that

$\left\|\Delta X ight\|_{\mathsf{max}}\leqslant \mu(X)\Rightarrow ar{\mathcal{A}}(X+\Delta X)$ is stable

- it considers how close the eigenvalues are to 1 and how sensitive they are w.r.t the controller parameters ;
- this measure is directly linked an estimation of the smallest word-length bit needed to guarantee the closed-loop stability
- the optimal design problem associated consists in finding an equivalent realization (T⁻¹AT, T⁻¹B, CT, D) that maximizes this measure.

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

• the measure is such that

 $\|\Delta X\|_{\mathsf{max}} \leqslant \mu(X) \Rightarrow ar{A}(X + \Delta X)$ is stable

- it considers how close the eigenvalues are to 1 and how sensitive they are w.r.t the controller parameters ;
- this measure is directly linked an estimation of the smallest word-length bit needed to guarantee the closed-loop stability
- the optimal design problem associated consists in finding an equivalent realization (T⁻¹AT, T⁻¹B, CT, D) that maximizes this measure.

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

• the measure is such that

 $\|\Delta X\|_{\mathsf{max}} \leqslant \mu(X) \Rightarrow ar{A}(X + \Delta X)$ is stable

- it considers how close the eigenvalues are to 1 and how sensitive they are w.r.t the controller parameters ;
- this measure is directly linked an estimation of the smallest word-length bit needed to guarantee the closed-loop stability
- the optimal design problem associated consists in finding an equivalent realization (T⁻¹AT, T⁻¹B, CT, D) that maximizes this measure.

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

• the measure is such that

 $\|\Delta X\|_{\mathsf{max}} \leqslant \mu(X) \Rightarrow ar{A}(X + \Delta X)$ is stable

- it considers how close the eigenvalues are to 1 and how sensitive they are w.r.t the controller parameters ;
- this measure is directly linked an estimation of the smallest word-length bit needed to guarantee the closed-loop stability
- the optimal design problem associated consists in finding an equivalent realization (T⁻¹AT, T⁻¹B, CT, D) that maximizes this measure.

Implicit State-Space Framework

2 Macroscopic representation of algorithms through the implicit state-space framework

A pole sensitivity stability related measure

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Various implementation forms have to be taken into consideration

- shift-realizations
- δ -realizations
- observer-state-feedback
- direct form I or II
- cascade or parallel realizations
- etc...

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

In order to encompass all these implementations, we have proposed a specialized implicit state-space realization to be used as a unifying framework :

nterests

- macroscopic description of a FWL implementation
- more general than previous realizations
- more realistic with regard to the parameterization
- directly linked to the in-line computations to be performed

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

In order to encompass all these implementations, we have proposed a specialized implicit state-space realization to be used as a unifying framework :

Interests

- macroscopic description of a FWL implementation
- more general than previous realizations
- more realistic with regard to the parameterization
- directly linked to the in-line computations to be performed

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

In order to encompass all these implementations, we have proposed a specialized implicit state-space realization to be used as a unifying framework :

Interests

- macroscopic description of a FWL implementation
- more general than previous realizations
- more realistic with regard to the parameterization
- directly linked to the in-line computations to be performed

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

In order to encompass all these implementations, we have proposed a specialized implicit state-space realization to be used as a unifying framework :

Interests

- macroscopic description of a FWL implementation
- more general than previous realizations
- more realistic with regard to the parameterization

• directly linked to the in-line computations to be performed

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

In order to encompass all these implementations, we have proposed a specialized implicit state-space realization to be used as a unifying framework :

Interests

- macroscopic description of a FWL implementation
- more general than previous realizations
- more realistic with regard to the parameterization
- directly linked to the in-line computations to be performed

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The control algorithm is described with

• $J.T_{k+1} = M.X_k + N.U_k$ • $X_{k+1} = K.T_{k+1} + P.X_k + Q.$

 $Y_{k} = L.T_{k+1} + R.X_{k} + S.U_{k}$

Intermediate variables computation

(日)

Implicit State-Space Framework

$$\begin{pmatrix} J & 0 & 0 \\ -K & I & 0 \\ -L & 0 & I \end{pmatrix} \begin{pmatrix} T_{k+1} \\ X_{k+1} \\ Y_k \end{pmatrix} = \begin{pmatrix} 0 & M & N \\ 0 & P & Q \\ 0 & R & S \end{pmatrix} \begin{pmatrix} T_k \\ X_k \\ U_k \end{pmatrix}$$

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The control algorithm is described with

 $I.T_{k+1} = M.X_k + N.U_k$

2 $X_{k+1} = K.T_{k+1} + P.X_k + Q.U_k$

 $Y_{k} = L.T_{k+1} + R.X_{k} + S.U_{k}$

State-vector computation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Implicit State-Space Framework

 $\begin{pmatrix} J & 0 & 0 \\ -K & I & 0 \\ -L & 0 & I \end{pmatrix} \begin{pmatrix} T_{k+1} \\ X_{k+1} \\ Y_k \end{pmatrix} = \begin{pmatrix} 0 & M & N \\ 0 & P & Q \\ 0 & R & S \end{pmatrix} \begin{pmatrix} T_k \\ X_k \\ U_k \end{pmatrix}$

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The control algorithm is described with

$$J.T_{k+1} = M.X_k + N.U_k$$

2
$$X_{k+1} = K.T_{k+1} + P.X_k + Q.U_k$$

$$Y_{k} = L.T_{k+1} + R.X_{k} + S.U_{k}$$

Output computation

Implicit State-Space Framework

$$\begin{pmatrix} J & 0 & 0 \\ -K & I & 0 \\ -L & 0 & I \end{pmatrix} \begin{pmatrix} T_{k+1} \\ X_{k+1} \\ Y_k \end{pmatrix} = \begin{pmatrix} 0 & M & N \\ 0 & P & Q \\ 0 & R & S \end{pmatrix} \begin{pmatrix} T_k \\ X_k \\ U_k \end{pmatrix}$$

(日)

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realizatior

Conclusion

The control algorithm is described with

J.T_{k+1} = M.X_k + N.U_k
 X_{k+1} = K.T_{k+1} + P.X_k + Q.U_k
 Y_k = L.T_{k+1} + R.X_k + S.U_k

Implicit State-Space Framework

$$\begin{pmatrix} J & 0 & 0 \\ -K & I & 0 \\ -L & 0 & I \end{pmatrix} \begin{pmatrix} T_{k+1} \\ X_{k+1} \\ Y_k \end{pmatrix} = \begin{pmatrix} 0 & M & N \\ 0 & P & Q \\ 0 & R & S \end{pmatrix} \begin{pmatrix} T_k \\ X_k \\ U_k \end{pmatrix}$$

Intermediate variables

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The intermediate variables introduced allow to

- make explicit all the computations done
- show the order of the computations
- express a larger parameterization

All the coefficients used in the implicit framework can be regrouped in a generalized system matrix Z

$$Z \triangleq \begin{pmatrix} -J & M & N \\ K & P & Q \\ L & R & S \end{pmatrix}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Intermediate variables

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The intermediate variables introduced allow to

- make explicit all the computations done
- show the order of the computations

4

• express a larger parameterization

All the coefficients used in the implicit framework can be regrouped in a generalized system matrix Z

$$Z \triangleq \begin{pmatrix} -J & M & N \\ K & P & Q \\ L & R & S \end{pmatrix}$$

Implicit form

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

This form is implicit (but non singular) :

- the state or the output may be computed from intermediate variables
- an intermediate variable may be computed from another intermediate variable previously computed (in the same step)

computation of T_{k+1} is $J.T_{k+1} = M.X_k + N.U_k$

with
$$J = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \star & \ddots & 0 & & \vdots \\ \vdots & \star & 1 & 0 & \vdots \\ \vdots & \star & \ddots & 0 \\ \star & \dots & \star & 1 \end{pmatrix}$$

Examples

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

A realization with the $\delta\text{-operator}$ is described by :

$$\begin{cases} \delta X_k = A_{\delta} X_k + B_{\delta} U_k \\ Y_k = C_{\delta} X_k + D_{\delta} U_k \end{cases} \qquad \delta \triangleq \frac{q-1}{\Delta} \end{cases}$$

and it corresponds to the following implicit state-space :

$$\begin{pmatrix} I & 0 & 0 \\ -\Delta I & I & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} T_{k+1} \\ X_{k+1} \\ Y_k \end{pmatrix} = \begin{pmatrix} 0 & A_{\delta} & B_{\delta} \\ 0 & I & 0 \\ 0 & C_{\delta} & D_{\delta} \end{pmatrix} \begin{pmatrix} T_k \\ X_k \\ U_k \end{pmatrix}$$

Examples

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

A realization with the $\delta\text{-operator}$ is described by :

$$\begin{cases} \delta X_k = A_{\delta} X_k + B_{\delta} U_k \\ Y_k = C_{\delta} X_k + D_{\delta} U_k \end{cases} \qquad \delta \triangleq \frac{q-1}{\Delta} \end{cases}$$

and it corresponds to the following implicit state-space :

$$\begin{pmatrix} I & 0 & 0 \\ -\Delta I & I & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} T_{k+1} \\ X_{k+1} \\ Y_k \end{pmatrix} = \begin{pmatrix} 0 & A_{\delta} & B_{\delta} \\ 0 & I & 0 \\ 0 & C_{\delta} & D_{\delta} \end{pmatrix} \begin{pmatrix} T_k \\ X_k \\ U_k \end{pmatrix}$$

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

17/31

The Observer State-Feedback

$$\begin{cases} \hat{X}_{k+1} = A_p \hat{X}_k + B_p U_k + K_f (Y_k - C_p \hat{X}_k) \\ U_k = -K_c \hat{X}_k + Q (Y_k - C_p \hat{X}_k) \end{cases}$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

where (A_p, B_p, C_p) corresponds to the plant system and K_c , K_f and Q are the controller's parameters.

A first parametrization

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The Observer State-Feedback

$$\begin{cases} \hat{X}_{k+1} = A_p \hat{X}_k + B_p U_k + K_f (Y_k - C_p \hat{X}_k) \\ U_k = -K_c \hat{X}_k + Q (Y_k - C_p \hat{X}_k) \end{cases}$$

where (A_p, B_p, C_p) corresponds to the plant system and K_c , K_f and Q are the controller's parameters.

A first parametrization

$$\begin{pmatrix} \begin{pmatrix} I & 0 \\ -Q & I \\ (-K_f & -B_p) & I & 0 \\ (0 & -I) & 0 & I \end{pmatrix} \begin{pmatrix} \begin{pmatrix} T_{k+1}^{(1)} \\ T_{k+1}^{(2)} \\ T_{k+1}^{(k)} \\ T_{k} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -C_p \\ -K_c \\ 0 \end{pmatrix} \begin{pmatrix} I \\ 0 \\ T_{k} \end{pmatrix} \begin{pmatrix} T_{k+1}^{(1)} \\ T_{k}^{(2)} \\ T_{k} \end{pmatrix}$$

(日) (四) (종) (종) (종) (종) (종)

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The Observer State-Feedback

$$\begin{cases} \hat{X}_{k+1} = A_p \hat{X}_k + B_p U_k + K_f (Y_k - C_p \hat{X}_k) \\ U_k = -K_c \hat{X}_k + Q (Y_k - C_p \hat{X}_k) \end{cases}$$

where (A_p, B_p, C_p) corresponds to the plant system and K_c , K_f and Q are the controller's parameters.

A first parametrization

$$\begin{pmatrix} \begin{pmatrix} I & 0 \\ -Q & I \\ (-K_f & -B_p) & I & 0 \\ (0 & -I) & 0 & I \end{pmatrix} \begin{pmatrix} \begin{pmatrix} T_{k+1}^{(1)} \\ T_{k+1}^{(2)} \\ \tilde{K}_{k+1} \\ U_k \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} -C_p \\ -K_c \end{pmatrix} & \begin{pmatrix} I \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} T_k^{(1)} \\ T_k^{(2)} \\ \tilde{K}_k \\ T_k \end{pmatrix}$$

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The Observer State-Feedback

$$\begin{cases} \hat{X}_{k+1} = A_p \hat{X}_k + B_p U_k + K_f (Y_k - C_p \hat{X}_k) \\ U_k = -K_c \hat{X}_k + Q (Y_k - C_p \hat{X}_k) \end{cases}$$

where (A_p, B_p, C_p) corresponds to the plant system and K_c , K_f and Q are the controller's parameters.

A first parametrization

$$\begin{pmatrix} \begin{pmatrix} I & 0 \\ -Q & I \\ (-K_f & -B_p) & I & 0 \\ (0 & -I) & 0 & I \end{pmatrix} \begin{pmatrix} T_{k+1}^{(1)} \\ T_{k+1}^{(2)} \\ K_{k+1} \\ U_k \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -C_p \\ -K_c \\ 0 \end{pmatrix} \begin{pmatrix} I \\ 0 \\ 0 \\ K_k \end{pmatrix} \begin{pmatrix} T_k^{(1)} \\ T_k^{(2)} \\ K_k \\ Y_k \end{pmatrix}$$

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The Observer State-Feedback

$$\begin{cases} \hat{X}_{k+1} = A_p \hat{X}_k + B_p U_k + K_f (Y_k - C_p \hat{X}_k) \\ U_k = -K_c \hat{X}_k + Q (Y_k - C_p \hat{X}_k) \end{cases}$$

where (A_p, B_p, C_p) corresponds to the plant system and K_c , K_f and Q are the controller's parameters.

A first parametrization

$$\begin{pmatrix} \begin{pmatrix} I & 0 \\ -Q & I \\ (-K_f & -B_p) & I & 0 \\ (0 & -I) & 0 & I \end{pmatrix} \begin{pmatrix} \begin{pmatrix} T_{k+1}^{(1)} \\ T_{k+1}^{(2)} \\ \vdots \\ K_{k+1} \\ U_k \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} -C_p \\ -K_c \end{pmatrix} & \begin{pmatrix} I \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} T_{k}^{(1)} \\ T_{k}^{(2)} \\ \vdots \\ Y_k \end{pmatrix}$$

Examples

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The Observer State-Feedback

$$\begin{cases} \hat{X}_{k+1} = A_p \hat{X}_k + B_p U_k + K_f (Y_k - C_p \hat{X}_k) \\ U_k = -K_c \hat{X}_k + Q (Y_k - C_p \hat{X}_k) \end{cases}$$

where (A_p, B_p, C_p) corresponds to the plant system and K_c , K_f and Q are the controller's parameters.

An other possible parametrization

$$\begin{pmatrix} I & 0 & 0 \\ -B_p & I & 0 \\ -I & 0 & I \end{pmatrix} \begin{pmatrix} T_{k+1} \\ \hat{X}_{k+1} \\ U_k \end{pmatrix} = \begin{pmatrix} 0 & -(QC_p + K_c) & Q \\ 0 & (A_p - K_f C) & K_f \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} T_k \\ \hat{X}_k \\ Y_k \end{pmatrix}$$

Outline

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

A pole sensitivity stability related measure

Macroscopic representation of algorithms through the implicit state-space framework

3 Extension of the pole-sensitivity stability related measure

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

ce k

Optimal realization

Distance Conclusion and Perspectives

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The pole-sensitivity measure can be extended in implicit state-space framework.

$$\mu(Z) = \min_{1 \le k \le r} \frac{1 - |\lambda_k|}{\sqrt{N\Psi_k}}$$

whith N represents the number of non trivial elements, and

$$\Psi_{k} = \left\| \frac{\partial \left| \lambda_{k} \right|}{\partial Z} \times W_{Z} \right\|_{F}^{2}$$

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

 Ψ_k can be easily computed :

Proposition 1

 $\frac{\partial \left|\lambda_{k}\right|}{\partial Z} = \bar{M}_{1}^{\top} \frac{\partial \left|\lambda_{k}\right|}{\partial \bar{A}} \bar{M}_{2}^{\top}$

with

$$\bar{M}_1 \triangleq \begin{pmatrix} B_p L J^{-1} & 0 & B_p \\ K J^{-1} & I_n & 0 \end{pmatrix}$$
$$\bar{M}_2 \triangleq \begin{pmatrix} J^{-1} N C_p & J^{-1} M \\ 0 & I_n \\ C_p & 0 \end{pmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Proposition 2 (Wu, Chen, Li, ... 2001)

Let $(\lambda_k)_{1 \leq k \leq r}$ be the eigenvalue of a matrix $M \in \mathbb{R}^{r \times r}$ and $(x_k)_{1 \leq k \leq r}$ the corresponding right eigenvectors. Denote $M_x \triangleq (x_1 x_2 \dots x_r)$ and $M_y = (y_1 y_2 \dots y_r) \triangleq M_x^{-H}$. Then $\frac{\partial \lambda_k}{\partial M} = y_k^* x_k^\top \quad \forall k = 1, \dots, r$ and $\frac{\partial |\lambda_k|}{\partial M} = \frac{1}{|\lambda_k|} Re\left(\lambda_k^* \frac{\partial \lambda_k}{\partial M}\right)$

Outline

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

A pole sensitivity stability related measure

Macroscopic representation of algorithms through the implicit state-space framework

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

pace

Optimal realization

Conclusion and Perspectives

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Denote \mathscr{R}_H the set of equivalent realizations with H as a transfer function.

The *Optimal design problem* consists in finding a realization \mathcal{R}^{opt} in \mathscr{R}_H that maximizes μ

$$\mathcal{R}^{opt} = \mathop{arg \; max}\limits_{\mathcal{R} \in \mathcal{R}_{H}} \ \mu(\mathcal{R})$$

 \mathcal{R}_H is too large, and practically, only realizations with special structure (classical state-space, δ -operator, cascade decomposition, ...) are considered.

(日)

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Denote \mathscr{R}_H the set of equivalent realizations with H as a transfer function.

The *Optimal design problem* consists in finding a realization \mathcal{R}^{opt} in \mathscr{R}_H that maximizes μ

$$\mathcal{R}^{opt} = \mathop{arg \; max}\limits_{\mathcal{R} \in \mathcal{R}_{H}} \ \mu(\mathcal{R})$$

 \mathscr{R}_{H} is too large, and practically, only realizations with special structure (classical state-space, δ -operator, cascade decomposition, ...) are considered.

(日)

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Some subsets of \mathscr{R}_{H} can be defined from an initial realization Z_{0} and a similarity

$$Z = T_1 Z_0 T_2$$

with

general case

$$\mathcal{T}_1 = \begin{pmatrix} U & & \\ & T^{-1} & \\ & & I_p \end{pmatrix}, \mathcal{T}_2 = \begin{pmatrix} V & & \\ & T & \\ & & I_m \end{pmatrix}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

U,V,T non-singular matrices

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Some subsets of \mathscr{R}_H can be defined from an initial realization Z_0 and a similarity

$$Z = T_1 Z_0 T_2$$

with

classical state-space

$$\mathcal{T}_1 = \begin{pmatrix} I_l & & \\ & \mathcal{T}^{-1} & \\ & & I_p \end{pmatrix}, \mathcal{T}_2 = \begin{pmatrix} I_l & & \\ & \mathcal{T} & \\ & & I_m \end{pmatrix}$$

T non-singular matrix

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Some subsets of \mathscr{R}_H can be defined from an initial realization Z_0 and a similarity

$$Z = T_1 Z_0 T_2$$

with

 δ -operator

$$\mathcal{T}_1 = \begin{pmatrix} T^{-1} & & \\ & T^{-1} & \\ & & I_p \end{pmatrix}, \mathcal{T}_2 = \begin{pmatrix} T & & \\ & T & \\ & & I_m \end{pmatrix}$$

T non-singular matrix

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The example used here is a single-input single-output fluid power control system (Njabeleke, Whidborne)

4			
	-4.9631e-7		

$$B_{p} = \begin{pmatrix} 3.0504e-3\\ -1.2373e-2\\ -1.2375e-2\\ -8.8703e-2 \end{pmatrix} C_{p} = \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}$$

				-3.3071e-1	
7				1.9869e+0	
				-3.9816e+0	
				3.3255ee+0	
	-1.6112e-3	-1.5998e-3	-1.5885e-3	-1.5773e-3	-8.0843e-4

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Example

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The example used here is a single-input single-output fluid power control system (Njabeleke, Whidborne)

$$A_p = \begin{pmatrix} 9.9988e-1 & 1.9432e-5 & 5.9320e-5 & -6.2286e-5 \\ -4.9631e-7 & 2.3577e-2 & 2.3709e-5 & 2.3672e-5 \\ -1.5151e-3 & 2.3709e-2 & 2.3751e-5 & 2.3898e-5 \\ 1.5908e-3 & 2.3672e-2 & 2.3898e-5 & 2.3697e-5 \end{pmatrix}$$

$$B_p = \begin{pmatrix} 3.0504e - 3\\ -1.2373e - 2\\ -1.2375e - 2\\ -8.8703e - 2 \end{pmatrix} C_p = \begin{pmatrix} 1\\ 0\\ 0\\ 0 \\ 0 \end{pmatrix}^\top$$

				-3.3071e-1	
				1.9869e+0	
				-3.9816e+0	
				3.3255ee+0	
	-1.6112e-3	-1.5998e-3	-1.5885e-3	-1.5773e-3	-8.0843e-4

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Example

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

The example used here is a single-input single-output fluid power control system (Njabeleke, Whidborne)

$$A_{p} = \begin{pmatrix} 9.9988e-1 & 1.9432e-5 & 5.9320e-5 & -6.2286e-5 \\ -4.9631e-7 & 2.3577e-2 & 2.3709e-5 & 2.3672e-5 \\ -1.5151e-3 & 2.3709e-2 & 2.3751e-5 & 2.3698e-5 \\ 1.5908e-3 & 2.3672e-2 & 2.3898e-5 & 2.3698e-5 \end{pmatrix}$$

$$B_p = \begin{pmatrix} 3.0504e-3\\ -1.2373e-2\\ -1.2375e-2\\ -8.8703e-2 \end{pmatrix} C_p = \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}^\top$$

		-1.6112e-3	-1.5998e-3		-1.5773e-3	-8.0843e-4
	0	0	0	1	3 3255ee∔0	0
$z_0 = $	0	0	1	0	-3.9816e+0	0
7 _	0	1	0	0	1.9869e+0	0
	0	0	0	0	-3.3071e-1	1
	0	0	0	0	0	0)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

T. Hilaire, P. Chevrel, J.P. Clauzel

Introductior

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

For example, it is possible to find the $\delta\mbox{-optimal realization}$

$$Z^{\delta}_{opt} = \mathop{arg max}\limits_{det(\mathcal{T})
eq 0} \mu(\mathcal{Z}(\mathcal{T}))$$

with

Example

$$Z(T) = \begin{pmatrix} T^{-1} & & \\ & T^{-1} & \\ & & I_p \end{pmatrix} Z_0^{\delta} \begin{pmatrix} T & & \\ & T & \\ & & I_m \end{pmatrix}$$

			-4.3728e+0	2.7770e+0	1.5953e+1	2.1160e+1	3.5644e-2
			2.3090e+0	-1.2959e+0	-6.6800e+0	-9.5796e+0	-2.6145e-2
			6.4736e+0	-4.1528e+0	-2.4059e+1	-3.2103e+1	-1.0745e-2
			-1.7320e+0	1.0786e+0	6.0998e+0	8.1425e+0	1.8563e-2
	0 1						
		0 4					
							-8.0843e-4

Example

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introductior

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

For example, it is possible to find the $\delta\text{-optimal realization}$

$$Z^{\delta}_{opt} = \mathop{arg max}\limits_{det(\mathcal{T})
eq 0} \mu(\mathcal{Z}(\mathcal{T}))$$

with

$$Z(T) = \begin{pmatrix} T^{-1} & & \\ & T^{-1} & \\ & & I_p \end{pmatrix} Z_0^{\delta} \begin{pmatrix} T & & \\ & T & \\ & & I_m \end{pmatrix}$$

	$(1 \ 0 \ 0 \ 0)$	-4.3728e+0	2.7770e+0	1.5953e+1	2.1160e+1	3.5644e-2
	0 1 0 0	2.3090e+0	-1.2959e+0	-6.6800e+0	-9.5796e+0	-2.6145e-2
	0 0 1 0	6.4736e+0	-4.1528e+0	-2.4059e+1	-3.2103e+1	-1.0745e-2
	0 0 0 1	-1.7320e+0	1.0786e+0	6.0998e+0	8.1425e+0	1.8563e-2
$Z_{opt}^{\delta} =$	$-\Delta 0 0 0$	1	0	0	0	0
opt	$0 - \Delta 0 0$	0	1	0	0	0
	0 0 - 4 0	0	0	1	0	0
	0 0 0 - 4	0	0	0	1	0
	$\sqrt{0 0 0 0}$	-2.8733e+0	5.6735e-1	-1.3643e+0	2.7498e+0	-8.0843e-4

(日)

Example : some results

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

realization	$\mu(\mathcal{R})$	parameters
canonical form q	4.4196e-12	9
optimal <i>q</i>	6.8714e-5	25
canonical form δ	1.1699e-5	9
optimal δ	1.7413e-3	25
cascade	1.0484e-4	18

Example : some results

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

realization	$\mu(\mathcal{R})$	parameters
canonical form q	4.4196e-12	9
optimal <i>q</i>	6.8714e-5	25
canonical form δ	1.1699e-5	9
optimal δ	1.7413e-3	25
cascade	1.0484e-4	18

Example : some results

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

realization	$\mu(\mathcal{R})$	parameters
canonical form q	4.4196e-12	9
optimal <i>q</i>	6.8714e-5	25
canonical form δ	1.1699e-5	9
optimal δ	1.7413e-3	25
cascade	1.0484e-4	18

Outline

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

A pole sensitivity stability related measure

Macroscopic representation of algorithms through the implicit state-space framework

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

ace

Optimal realization

5 Conclusion and Perspectives

Conclusions and Perspectives

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Conclusions

- Implicit State-Space as a Unifying Framework
- A pole-sensitivity (stability related) measure
- optimal design on various forms

erspectives

- Other structurations to study $(q/\delta \text{ mixed realizations, ...})$
- Multi-criteria optimization (Roundoff noise gain, stability related measure, nb non-trivial parameters, ...)

(日)

• Toolbox to solve theses problems

Conclusions and Perspectives

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Introduction

A pole sensitivity stability related measure

Implicit State-Space Framework

Pole Sensitivity Measure

Optimal realization

Conclusion

Conclusions

- Implicit State-Space as a Unifying Framework
- A pole-sensitivity (stability related) measure
- optimal design on various forms

Perspectives

- Other structurations to study $(q/\delta \text{ mixed realizations, ...})$
- Multi-criteria optimization (Roundoff noise gain, stability related measure, nb non-trivial parameters, ...)
- Toolbox to solve theses problems

Acknowledgement

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauzel

Appendix Acknowledgement Bibliography

The authors wish to thank PSA Peugeot Citroën for their interest and financial support and James Whidborne for its numerical example.

Bibliography

ROCOND'06

T. Hilaire, P. Chevrel, J.P. Clauze

Appendix Acknowledgemen Bibliography M. Gevers and G. Li.

Parametrizations in Control, Estimation and Filtering Probems. Springer-Verlag, 1993.

R. Istepanian and J.F. Whidborne, editors. Digital Controller implementation and fragility. Springer, 2001.

T. Hilaire, P. Chevrel, and Y. Trinquet

Implicit state-space representation : a unifying framework for FWL implementation of LTI systems IFAC05 Wolrd Congress, July 2005.