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o Finite Word Length context

@ Evaluate the impact of the quantization of the embedded
coefficients

o Compare various realizations and find an optimal one
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FWL degradation

Origin of the degradation

The deterioration induced by the FWL implementation comes
A pole from .

sensitivity

stability @ Quantization of the involved coefficients

related

measure — parametric errors

@ Roundoff noises in numerical computations
— numerical noises

Only the deterioration induced by the quantization of
coefficients is considered here.
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Problem setup

Let's consider a discrete plant P

73{ Xieyr = ApXP + Bp(Ri + Yi)

Ue = GX[
npee.
e and a LTI controller C
related
measure C Xk+1 — AXk —"_ BUk
Y. = CXi+ DUy

The realizations of the form (T AT, T~1B, CT,D), with T a
non-singular matrix, are all equivalent in infinite precision.
They are no more in finite precision.

The degradation of the realization depends on the realization.
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A

When quantized, the parameters X = (g g) are changed in

X + AX and the closed-loop system can became unstable.

Let's denote (Ax(A(X)))
closed-loop system

L<k<] the eigenvalues of the

Xer1 = /:4)__<k+BRk (1)
U = CX,
with
58 (Ar+BpDCy ByC
BC, A

B2 (F)eeic 0



Pole-sensitivity stability related measure

Chen, Wu, Li,... (2000-2005) have proposed a pole-sensitivity
measure defined by

A 1= | X(AX)))
n(X) = N R,
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. (2000-2005) have proposed a pole-sensitivity

S measure defined by
P Cius 1— | Ak(A(X
w(X) & min ’ K(A( ))‘
1<k<r VN,
ey with N is the number of non-trivial elements in X (non-zero
stability elements in AX) and Wy is the pole sensitivity of the

measure

closed-loop with respect to the parameters :

Z(WX)I,J

0 !/\k(A(X))!
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Pole-sensitivity stability related measure

Chen, Wu, Li,... (2000-2005) have proposed a pole-sensitivity
measure defined by

with N is the number of non-trivial elements in X (non-zero
elements in AX) and Wy is the pole sensitivity of the
closed-loop with respect to the parameters :

Z(WX)I,J

Wy is the weighting matrix associated to the realization matrix
X, defined by

0 !/\k(A(X))!

”J

0 if X;; is exactly implemented
(W), =4 7 Y
1 if not
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@ the measure is such that

[AX]| 0 < #(X) = A(X + AX) is stable

@ it considers how close the eigenvalues are to 1 and how
sensitive they are w.r.t the controller parameters ;
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the measure is such that

[AX]| 0 < #(X) = A(X + AX) is stable
A pole
et @ it considers how close the eigenvalues are to 1 and how
e sensitive they are w.r.t the controller parameters ;

@ this measure is directly linked an estimation of the
smallest word-length bit needed to guarantee the
closed-loop stability

@ the optimal design problem associated consists in finding
an equivalent realization (T AT, T~1B, CT, D) that
maximizes this measure.
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The need of a unifying framework
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Various implementation forms have to be taken into
consideration

@ shift-realizations

O-realizations

observer-state-feedback

Implicit o

State-Space .

Framework @ direct form | or |l
o
o

cascade or parallel realizations

etc...



The need of a unifying framework

ROCOND'06

T. Hilaire,
P. Chevrel

i (LTS In order to encompass all these implementations, we have
proposed a specialized implicit state-space realization to be
used as a unifying framework :

Implicit
State-Space
Framework



The need of a unifying framework

In order to encompass all these implementations, we have
proposed a specialized implicit state-space realization to be
used as a unifying framework :

@ macroscopic description of a FWL implementation

Implicit
State-Space
Framework




The need of a unifying framework

In order to encompass all these implementations, we have
proposed a specialized implicit state-space realization to be
used as a unifying framework :

@ macroscopic description of a FWL implementation

Implicit

State-Space 5 0 g
e @ more general than previous realizations




The need of a unifying framework

In order to encompass all these implementations, we have
proposed a specialized implicit state-space realization to be
used as a unifying framework :

@ macroscopic description of a FWL implementation

Implicit
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In order to encompass all these implementations, we have
proposed a specialized implicit state-space realization to be
used as a unifying framework :

@ macroscopic description of a FWL implementation

Implicit

State-Space 5 0 g
e @ more general than previous realizations

@ more realistic with regard to the parameterization

o directly linked to the in-line computations to be performed
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The control algorithm is described with

Q J Tii1=MX+ N.Ug

Intermediate variables computation
Implicit
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(1] J.Tk+1 = M.X, + N.Uy
Q X1 =K. T+ PX+ Q.U

State-vector computation
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Implicit State-Space Framework

The control algorithm is described with

(1] J.Tk+1 = M.X, + N.Uy
Q@ Xiy1=K.Tip1+ P.Xie + Q.Ux
Q Yi=LTi1+RXk+S.Ug

Output computation

Implicit
State-Space
Framework



Implicit State-Space Framework
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RSl The control algorithm is described with

Q J Tyi1=MXe+ N.Ug
Q Xit1=K.Typ1+ P.Xk+ Q. Uk
Q Y= L.Tk+1 + R. X + S.Ux

4

Implicit State-Space Framework

Implicit
State-Space
Framework

J 0 0\ [Tz 0 M N\ [Tk
K 1 0| [Xea|l=(0 P Q@] [X
L 0 I Y 0o R s/ \u
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Intermediate variables

The intermediate variables introduced allow to
@ make explicit all the computations done
@ show the order of the computations

@ express a larger parameterization

e All the coefficients used in the implicit framework can be

State-Space
F k H [ )
ramewor regrouped in a generalized system matrix Z

-J M N
Z2|l K P Q@
L R S



Implicit form

This form is implicit (but non singular) :

@ the state or the output may be computed from
intermediate variables

@ an intermediate variable may be computed from another
intermediate variable previously computed (in the same
step)
computation of Ty 1 is J.Txr1 = M. X, + N.Uy

Implicit

Siate Space 10 ... ...0
* 0
with J = * 1 0
* 0
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A realization with the J-operator is described by :

0Xx = AsXk+ BsUx 54 gt
Y = GCsXi+ DsUy A
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J.P. Clauzel A realization with the J-operator is described by :

0Xx = AsXk+ BsU 54 gt
Yo = CsXi+ DsUyg A
and it corresponds to the following implicit state-space :
Implicit
Fameverc I 0 0\ /[Tkn 0 As Bs\ [T«
—Al 1 0 Xewr1 | =10 [ O Xk

0 0 |/ Yk 0 G Dy Uk
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= Ap)/\(k + BpUk + Kf(Yk — Cp),\(k)
U = — KXk + Q(Yk — CoXk)

where (A, By, Cp) corresponds to the plant system
and K., Kr and Q are the controller's parameters.
Implicit

State-Space
Framework
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where (A, By, Cp) corresponds to the plant system
and K., Kr and Q are the controller's parameters.
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Ap)/\(k + BpUk + Kf(Yk — Cp),\(k)
U = — KXk + Q(Yk — CoXk)

where (A, By, Cp) corresponds to the plant system
and K., Kr and Q are the controller's parameters.
Implicit

State-Space
Framework




ApXi + BpUi + Ke(Yi — CoXi)
Uk = — KCXk =+ Q( Yk — CpXk)

where (Ap, By, Cp) corresponds to the plant system
and K., Kr and Q are the controller's parameters.

Implicit
State-Space
Framework

/ 0 0\/ Tk 0 —(QRG+K) Q\/T«
=By I O Xkq1 | = |10 (A —KeC)  Kr || Xk
1o I\ u 0 0 o M\,
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The pole-sensitivity measure can be extended in implicit
state-space framework.

.1 — |k
Z) = —
'u( ) lgklgr \/N\Uk
whith N represents the number of non trivial elements, and

2

XWZ

Measure

Pole. _. a |)\k’
Sensitivit \U —
: H 07

F
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O\l _ o1 Ol o7
— 22Ky
EY4 L 9Aa 72
with
-, (BylJl 0 B,
Pole Ml B (KJ_l In O
Messre JING, JIM

M, £ 0 I,
Gy 0
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Proposition 2 (Wu, Chen, Li, ... 2001)

Let (Ak);<k<, be the eigenvalue of a matrix M € R"™*" and
(Xk)1<k<, the corresponding right eigenvectors.

Denote M, £ (x1x2 .. .X,) and M, = (y1y2 .. .y,) £ MX_H.
Then

Ok .
M )/kaT

o 1 « Ok
oM |)\k|R ()\ E)M)

Vk=1,...,r

and
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Denote Zy the set of equivalent realizations with H as a
transfer function.

The Optimal design problem consists in finding a realization
ROPt in Z that maximizes

R = arg max u(R)
RERY

Optimal
realization



Denote Zy the set of equivalent realizations with H as a
transfer function.

The Optimal design problem consists in finding a realization
ROPt in Z that maximizes

ROPt = arg max u(R)
RERY

P is too large, and practically, only realizations with special
structure (classical state-space, d-operator, cascade

Optimal Ao .
realization decomposition, ...) are considered.
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Z ="TZyT

with

general case

T = T! T = T

Optimal
realization

U,V,T non-singular matrices




Some subsets of #Z; can be defined from an initial realization
Zp and a similarity

Z ="TZyT
with
classical state-space
I I
T = T T2 = T
Ip Im

Optimal
realization

T non-singular matrix
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T. Hilaire, Some subsets of #Z; can be defined from an initial realization
Zp and a similarity
Z ="TZyT

with

d-operator

T

I
i
S
I
\'

Optimal
realization

T non-singular matrix
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Hilaire, The example used here is a single-input single-output fluid
power control system (Njabeleke, Whidborne)

9.9988e—1 1.9432e—5 5.9320e—5  —6.2286e—5
—4.9631e—7  2.3577e—2  2.3709e—5 2.3672e—5
—1.5151e—3  2.3709e—2  2.375le—5 2.3898e—5
1.5908e—3 2.3672e—2  2.3898e—5 2.3667e—5

Ap =

3.0504e—3
—1.2373e—2 B
—1.2375e—2 | P =
—8.8703e—2

[=R=N=N

Optimal
realization
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T Hilaire, The example used here is a single-input single-output fluid

J.P. Clauzel power control system (Njabeleke, Whidborne)

9.9988e—1 1.9432e—5 5.9320e—5  —6.2286e—5
—4.9631e—7  2.3577e—2  2.3709e—5 2.3672e—5

Ap = | _1.5151e~3 2.3700e—2 2.375le—5  2.3898¢—5
1.5008¢—3  2.3672e—2  2.3898e—5  2.3667e—5
3.0504e—3 1\ "
B —1.2373e—2 _lo
P = | —1.2375e—2 | P~ |0
—8.8703e—2 0
0 0 0 0 0 0
0 0 0 0 —3.3071e—1 1
P 1 0 0 1.9869e-+0 0
. 0= 1 o 0 1 0 —3.9816e+0 0
Optimal 0 0 0 1 3.3255ee+0 0
realization 0 | —1.6112e—3 —1.5098¢—3 —1.5885e—3 —1.5773e—3 | —8.0843¢—4
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ngt =arg max u(Z(T))
det(T)+0

with
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ROCOND'06 For example, it is possible to find the d-optimal realization

T. Hilaire, )
P.C Zopt = arg max w(Z(T))
lauze det(T)+0
with
T1 T
_ -1 0
Z(T)= T Z; T
lp Im
10 0 0| —4.3728e40  2.7770e+0  1.5953e+1  2.1160e+1 | 3.5644e—2
010 0| 23090et0  —1.2959e+0 —6.6800e+0 —9.5796e+0 | —2.6145e—2
Ontimal 001 0| 64736e+0  —4.1528e10 —2.4050e+1 —3.2103e+1 | —1.0745e—2
A 0 0 0 1| —1.7320e+0  1.0786e+0  6.0998c+0  8.1425e+0 | 1.8563e—2
2z, = |80 00 i 0 0 0 0
0-A0 0 0 1 0 0 0
0 0-40 0 0 1 0 0
00 0-4 0 0 0 1 0
0 0 0 0| —2.8733e10 5673561  —1.3643e+0  2.74986+0 | —8.0843c—4
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Example : some results
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T. Hilaire,
%, € el

L realization L w(R) L parameters

canonical form g | 4.4196e-12 9
optimal g 6.8714e-5 25
canonical form § | 1.1699e-5 9
optimal § 1.7413e-3 25
(cascade { 1.0484e-4 { 18

Optimal
realization
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@ Implicit State-Space as a Unifying Framework
@ A pole-sensitivity (stability related) measure

@ optimal design on various forms

Perspectives

@ Other structurations to study (g/d mixed realizations, ...)

@ Multi-criteria optimization (Roundoff noise gain, stability
related measure, nb non-trivial parameters, ...)

@ Toolbox to solve theses problems

Conclusion
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