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Various implementation forms have to be taken into
consideration:

@ shift-realizations

Implicit
State-Space
Framework

O-realizations

observer-state-feedback

°
°

@ direct form | or Il

@ cascade or parallel realizations
°

etc...
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Tt . o
O So, we consider all realizations where the outputs are computed

from the inputs with operations like:

e multiplications by a constant

Implicit @ additions
State-Space

Framework @ shifts (value stored and used at the next step)

mutliplication by
a constant

additions
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Wi In order to encompass all these implementations, we have
0. Sentieys proposed a unifying framework to algebraically represent them:

Implicit @ macroscopic description of a FWL implementation

State-Space
Framework

@ more general than previous realizations (state-space,...)
@ more realistic with regard to the parameterization

o directly linked to the in-line computations to be performed

We can describe all possible linear graphs (with additions,
multiplications and shift operators) and characterize each
computational steps.
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Implicit State-Space Framework
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T. Hilaire, All the possible graphs are described by

(1] J.Tk+1 = M. X+ N.Uy
Q X1 =K. T+ PX+ Q.U
ISTaPtIE:iStpace e Yk = L Tk+]_ + RXk + SUk

Framework

State-vector computation
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T. Hilaire, All the possible graphs are described by
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‘ O J.Tis1 = MX + N.Uy

Q@ Xiy1=K.Tip1+ P.Xe + Q.Ux
ISTaPtIE:iStpace e Yk = L Tk+1 + RX[( + SUk

Framework

Output computation
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T Hilaire, All the possible graphs are described by

Q J Tyi1=MX+ N.Ug
Q Xii1 =K. Tkp1+ PXk + Q.U
State Space Q@ Yi=LTi1+RXc+S.Us

Framework

4

Implicit State-Space Framework

J 0 0\ [Tis1 0 M N\ [Tk
K 1 0| [Xea|l=(0 P Q@] [X
L 0 I Y 0o R s/ \u
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The intermediate variables introduced allow to

Implicit L )
State-Space @ make explicit all the computations done

Framework

@ show the order of the computations

@ express a larger parameterization
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Xk =
Yy =

It is computed with
Implicit

State-Space

Framework

A realization with the J-operator is described by :

As Xy + Bs U 54 a1
Cs X, + Ds Uy A

T = AsXx+ BsUg
Xerr = Xk +AT
Yi = CsXi+ DsUyg
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A realization with the J-operator is described by :

T. Hilaire,
0Xx = AsXk+ BsUx §A gl
Ye = CsXi+ DsUy A

It is computed with
Implicit
State-Space

Framework T — A5Xk _|_ B6Uk
Xerr = Xk +AT
Ye = CsXix+ DsUg

and it corresponds to the following implicit state-space :

I 0 0\ /Tis1 0 As Bs\ [T«
Al | 0] [ Xesr ] =0 1 0 X
0 0 / Yk 0 C5 D5 Uk



Example

EUSIPCO'07

T. Hilaire, U(k)

One can find the Direct Form Il transposed with J-operator

D. Ménard
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EUSIPCO'07 Let's consider a MIMO transfer function G defined by

S G:z— C(zZl —A'B+D
L and a noise U(k) with moments

pu 2 E{U(K)Y, Wy 2 E{U(UT(K)}, of 2 E{UT(KU(K)}

Filtered noise

Output Noise
Power U(k) Y (k)

Then the filtered noise Y satisfies

py = G0)uy, o2 = tr (wU(DTD +BT WOB)>

where W, is the observability Grammian of G, solution of the
Lyapunov equation W, = ATW,A+ C'C
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When implemented, the 3 steps of the computations are
modified
J.T*(k+1) «— MX*(k)+ N.U(k)+ Br(k)
X*(k+1) « K.T"(k+1)+ P.X*(k)+ Q.U(k) + Bx(k)
Y*(k) «— LT*(k+1)+RX*(k)+ S.U(k)+ By(k)

T. Hilaire,
arc
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Roundoff Noise Analysis
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T. Hilaire, When implemented, the 3 steps of the computations are
D. f‘\un‘,ud m0d|f|ed

JT*k+1) — M.X*(k)+ N.U(k)+ Br(k)
X*(k+1) — K.T*(k+1)+P.X*(k)+ Q.U(k) + Bx(k)
Y*(k) — LT*(k+1)+R.X*(k)+ S.U(k)+ By(k)

Output Noise
Power

The noises depends on
@ the way the computations are organized and done
@ the fixed-point representation of the inputs, outputs

@ the fixed-point representation of the states, intermediate
variables

@ the fixed-point representation of the constants



Roundoff Noise Analysis
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T Mk Let B represent all the noises: B = | Bx
D. I
By

0.S

Output noise power

The output noise power is given by

Output Noise P= tr (wB (M;—M2 aF M]_ WOM]T))
Power

where

M= (KJt 1 0), My=(LJL 0O 1)




Roundoff Noise Analysis
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Let B represent all the noises: B = | Bx
By

O. Sentieys

Output noise power

The output noise power is given by

p=ir (e (M M+ Mo )

Power

where

M= (KJt 1 0), My=(LJL 0O 1)

Vg depends on the hardware/software considerations, whereas
M; and M, depends only on the realization
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S The RNG is the ouput noise power in a specific computational
scheme

@ the noises appear only after multiplication (Roundoff After
Multiplication)

@ centered white noise

e each noise has the same power o3

Roundoff

Noise Gain

The Roundoff Noise Gain is defined by [Mullis76,Gevers93]

G=— (1)

o)
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o A Let introduce the matrices d; to ds. They are diagonal
matrices such

(dx);; & number of non-trivial parameters in the it" row of X

where trivial parameters are 0, 1 and —1 because they did not
imply a multiplication

Roundoff The RNG is given by

Noise Gain

G = tr <(dM Ydy+d)JT (LTL + KT WOK> J—l)
+tr ( (dx + dp + dg) Wo) + tr (dp + dg + ds)
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Optimal design
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It is possible to analytically describe equivalent classes of
0. Sentieys realization (Inclusion Principle)

Equivalent realization

Consider a realization Rg. All realizations R; such that

—h My Ny Y —J Mo No w
Ki P Q= u-t Ko Po Qo u
L R S Ip Lo Ry So Im

o are equivalent (with 2/ € R™", Y € R’/ and W € R/*/

design non-singular matrices).

State-space : (A, B,C,D) — (T *AT,771B,CT,D)



QOutline

EUSIPCO'07

T. Hilaire,
D. Ménard
ind

© Example

Example



Example

EUSIPCO'07

- We consider the following low-pass filter

T. Hilaire,
D. Ménard

Example

Z4Z

0.01594(z + 1)3

H —
(2) = 319740, + 1.5560 — 0.4538

And the following realizations
Z1:
Zo:
Z3:

direct form | with shift-operator,
RNG-optimal state-space realization,

RNG-optimal implicit state-space realization: we consider
all the equivalent realizations described by

{EX(k+1) —  AX(k)+ BU(k),
Y(k) = CX(k)+ DU(K).

RNG-optimal J-realization, with A =275,
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R The optimizations are done with Adaptative Simulated

Annealing method.

realization RNG Nb. operations
V4| 27.53dB 6+ 7x
Z> 16.40dB 12+ 16X
73 12.05dB 15+ 19x
Zy 13.35dB 15+ 19x

Example
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Conclusions

@ Implicit State-Space as a Unifying Framework

O. Sentieys

@ Output noise power analysis (RNG scheme)

@ optimal design on various forms

v

@ Other structurations to study (g/d mixed realizations,
pDFIIt...)

@ More realistic computational scheme

@ Methodology to consider other criteria (Ly-sensitivity,
Conclusion pole—sensitivity,...)

@ Toolbox to solve theses problems
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Any questions ?

Conclusion
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