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Finite Word Length context (fixed-point)
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Implementation of Linear Time Invariant controllers/filters
Finite Word Length context (fixed-point)

Motivation

Analysis (accurately) the roundoff noise errors in the
implementation

Compare various realizations and find an optimal one

T. Hilaire Bit Accurate Roundoff Noise Analysis of Fixed-Point Linear ControllersBit Accurate Roundoff Noise Analysis of Fixed-Point Linear Controllers 2/34



Introduction

ContextContext

filter/controller

H(z) =
0.004708z6

− 0.0251z5 + 0.05844z4
− 0.07608z3 + 0.05844z2

− 0.0251z + 0.004708

z6
− 5.653z5 + 13.38z4

− 16.98z3 + 12.18z2
− 4.679z + 0.7526

H(z) =
0.004708z6

− 0.0251z5 + 0.05844z4
− 0.07608z3 + 0.05844z2

− 0.0251z + 0.004708

z6
− 5.653z5 + 13.38z4

− 16.98z3 + 12.18z2
− 4.679z + 0.7526

H(z) =
0.004708z6

− 0.0251z5 + 0.05844z4
− 0.07608z3 + 0.05844z2

− 0.0251z + 0.004708

z6
− 5.653z5 + 13.38z4

− 16.98z3 + 12.18z2
− 4.679z + 0.7526

Xk+1 = AXk + BUk

Yk = CXk + DUk

Target

010
010

110
101

010
001

011
110

101
0

Implementation of Linear Time Invariant controllers/filters
Finite Word Length context (fixed-point)

The roundoff will depend on

the algorithmic relation to compute the output(s) from the
input(s)

the way the computations are implemented (wordlength,
roundoff, etc.)
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1 Implicit state-space framework

2 Roundoff noise analysis

3 Fixed-point implementation schemes

4 Optimal design

5 Conclusion
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Implicit State-Space Framework

The need of a unifying frameworkThe need of a unifying framework

Various implementation forms have to be taken into consideration:

shift-realizations

δ-realizations

observer-state-feedback

direct form I or II

cascade or parallel realizations

etc...

T. Hilaire Bit Accurate Roundoff Noise Analysis of Fixed-Point Linear ControllersBit Accurate Roundoff Noise Analysis of Fixed-Point Linear Controllers 5/34



Implicit State-Space Framework

Specialized Implicit Form (SIF)Specialized Implicit Form (SIF)

Implicit specialized state-space form J 0 0
−K I 0
−L 0 I

 Tk+1

Xk+1

Yk

 =

0 M N
0 P Q
0 R S

 Tk

Xk

Uk
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It corresponds to:

1 J.Tk+1 = M.Xk + N.Uk

2 Xk+1 = K .Tk+1 + P.Xk + Q.Uk

3 Yk = L.Tk+1 + R.Xk + S .Uk

Intermediate variables computation
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1 J.Tk+1 = M.Xk + N.Uk

2 Xk+1 = K .Tk+1 + P.Xk + Q.Uk
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Output(s) computation
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Implicit State-Space Framework

Specialized Implicit Form (SIF)Specialized Implicit Form (SIF)

Implicit specialized state-space form J 0 0
−K I 0
−L 0 I

 Tk+1

Xk+1

Yk

 =

0 M N
0 P Q
0 R S

 Tk

Xk

Uk


It is equivalent to the system

H : z 7→ CZ (zIn − AZ )BZ + DZ

with (
AZ BZ

CZ DZ

)
,

(
K
L

)
J−1

(
M N

)
+

(
P Q
R S

)
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Implicit State-Space Framework

Intermediate variablesIntermediate variables

The intermediate variables introduced allow to

make explicit all the computations done

show the order of the computations

express a larger parametrization

Implicit realization

The intermediate variables computation is expressed by

J.Tk+1 = M.Xk + N.Uk

with J lower triangular with 1 on diagonal, so

no need to compute J−1

an intermediate variable may be computed from another one
previously computed (in the same stage)
⇒ can express realizations like Yk = M1.M2...MiUk
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Implicit State-Space Framework

ExampleExample

A realization with the δ-operator is described by :{
δXk = AδXk + BδUk

Yk = CδXk + DδUk
δ , q−1

∆

It is computed with
T = AδXk + BδUk

Xk+1 = Xk + ∆T
Yk = CδXk + DδUk

and it corresponds to the following implicit state-space : I 0 0
−∆I I 0

0 0 I

 Tk+1

Xk+1

Yk

 =

0 Aδ Bδ

0 I 0
0 Cδ Dδ

 Tk

Xk

Uk
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Implicit State-Space Framework

ExampleExample

One can find the Direct Form II transposed with δ-operator

++ ++ +

U(k)

Y (k)

βn βiβn−1 β1 β0

αn
αn−1 αi α1

δ−1 δ−1 δ−1 δ−1

with

Aδ =

0BBBBBBBB@

−αn 1 0 . . . 0

.

.

. 0
. . .

. . .
.
.
.

.

.

.

.

.

.
. . .

. . . 0
−α1 0 . . . 0 1
−α0 0 . . . . . . 0

1CCCCCCCCA
Bδ =

0BBBBBBBB@

βn

.

.

.

.

.

.
β1
β0

1CCCCCCCCA
Cδ =

`
1 0 . . . 0

´
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Roundoff Noise Analysis

Fixed point representationFixed point representation

The real numbers are represented by fixed point numbers.

Fixed-point representation

A number is represented by

2−γ .N
N : signed integer with β bits
γ : fixed integer (scaling)

The quantization step 2−γ is fixed, the dynamic is fixed (and
limited)

± 2
1

2
0

2
−1... ...

.2β−γ−2

β − γ − 1

β

γ

2−γ

integer part fractional part

s
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Roundoff Noise Analysis

QuantizationQuantization

+≡x(k) x′(k)x′(k) x(k)
e(k)

Q[ ]

To Quantize a signal x(k) is equivalent to add a independent white
noise e(k).
Its first and second-order moments characterize it.
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Roundoff Noise Analysis

QuantizationQuantization

+≡x(k) x′(k)x′(k) x(k)
e(k)

Q[ ]

To Quantize a signal x(k) is equivalent to add a independent white
noise e(k).
Its first and second-order moments characterize it.
The first (µ) and second (σ, ψ) order moments are defined by

µe , E {e(k)}

ψe , E
{

(e(k)− µe) (e(k)− µe)
>
}

σ2
e , E

{
(e(k)− µe)

> (e(k)− µe)
}

= tr (ψe)
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Roundoff Noise Analysis

QuantizationQuantization

+≡x(k) x′(k)x′(k) x(k)
e(k)

Q[ ]

To Quantize a signal x(k) is equivalent to add a independent white
noise e(k).
Its first and second-order moments characterize it.
Right shifting of d bits :

truncation best roundoff

µe 2−γ−1(1− 2−d) 2−γ−d−1

σ2
e

2−2γ

12 (1− 2−2d) 2−2γ

12 (1− 2−2d)
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Roundoff Noise Analysis

Roundoff noise analysisRoundoff noise analysis

When implemented, the algorithm used is:
J.Tk+1 ← M.Xk + N.Uk

Xk+1 ← K .Tk+1 + P.Xk + Q.Uk

Yk ← L.Tk+1 + R.Xk + S .Uk

Quantizations during computations lead to noise addition ξk :

ξk ,

ξTk

ξXk

ξYk
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Roundoff Noise Analysis

Roundoff noise analysisRoundoff noise analysis

When implemented, the algorithm used is:
J.Tk+1 ← M.Xk + N.Uk + ξTk

Xk+1 ← K .Tk+1 + P.Xk + Q.Uk + ξXk

Yk ← L.Tk+1 + R.Xk + S .Uk + ξYk

Quantizations during computations lead to noise addition ξk :

ξk ,

ξTk

ξXk

ξYk
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Roundoff Noise Analysis

Roundoff noise analysisRoundoff noise analysis

Output Roundoff noise power

The output roundoff noise power is defined as the power of the
noises added on the output(s):

P , σ2
ξ′

The implemented system is equivalent to
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Roundoff Noise Analysis

Roundoff noise analysisRoundoff noise analysis

Output Roundoff noise power

The output roundoff noise power is defined as the power of the
noises added on the output(s):

P , σ2
ξ′

The implemented system is equivalent to

+
ξ(k) ξ′(k)

Y (k)U(k)

Hξ
Y ′(k)

R
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Roundoff Noise Analysis

Roundoff noise analysisRoundoff noise analysis

Considering the moments of ξk through G , we’ve got P:

P = tr
(
ψξ

(
M>

2 M2 + M>
1 WoM1

))
+ µ>ξ′µξ′

where µξ′ = H1(0)µξ = (CZ (I − AZ )−1M1 + M2)µξ

ψξ and µξ depends only on HW/SW considerations, whereas the
other terms depends on the realizations.
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Fixed point implementation

Fixed point implementationFixed point implementation

We supposed the following wordlengths known

βZ : coefficient’s wordlength

βU , βY , βT , βX : intputs, outputs, intermediate variables and
states’ wordlength

βADD : accumulator’s wordlength

γU is also known (γU = βU − 1−
⌊
log2

max
U

⌋
).

It is also supposed that the accumulations (in each scalar product)
are done on the same fixed-point format (no shift between two
additions).
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Fixed point implementation

Scalar productScalar product

S =
n∑

i=1

PiEi

+

+

×

×

×

×

Q1[ ]

Q2[ ]

Qi[ ]

Q[ ]

E1

E2

Ei

En

P1

P2

Pi

Pn

(β, γ)(βADD + βg, γADD)

(βi, γi)

(β1, γ1)

(β′
1, γ

′
1)

(β′
i, γ

′
i)

(βADD, γADD)

(βADD + βg, γADD)

Qn[ ] +
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Fixed point implementation

Fixed point implementationFixed point implementation

Peak value estimationγT

γX

γY

 =

βT

βX

βY

− 2.1l+n+p,1 −
⌊
log2

(
‖Hmax‖l1

max

|U|
)⌋

The common fixed-point format of each accumulator γADD can be
set, in order to represent

the dynamic of each product without overflow

the final result without overflow

γADD = βADD − max
row

0@0@βT
βX
βY

1A− βg −

0@γT
γX
γY

1A , α

1A
where

α = max
row

0@βZ − γZ + 1l+n+p,1

0@0@βT
βX
βU

1A−
0@γT

γX
γU

1A1A>1A
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Fixed point implementation

Fixed point implementationFixed point implementation

In order to align the results of the products, 2 computational
schemes are possible

Computational scheme

Roundoff After Multiplication : the result of the product is
quantized

Roundoff Before Multiplication : the coefficient is quantized

⇒ γZ is then deduced

Since the wordlengths, the binary point positions and the
quantizations are know, the moments ψξ and µξ can be
(analytically) expressed.
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Fixed point implementation

ExampleExample

8<: X (k + 1) =

„
0.58399 −0.42019
0.42019 0.1638

«
X (k) +

„
0.64635
−0.23982

«
Y (k) =

`
0.64635 0.23982

´
X (k) + 0.13111U(k)
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Fixed point implementation

ExampleExample

8<: X (k + 1) =

„
0.58399 −0.42019
0.42019 0.1638

«
X (k) +

„
0.64635
−0.23982

«
Y (k) =

`
0.64635 0.23982

´
X (k) + 0.13111U(k)

βU = βX = βY = 16
βZ = 16I3

βADD =

0@32
32
32

1A
max

U = 10 ⇒ γU = 11

γADD =

0@26
27
26

1A
γZ =

0@15 16 15
16 17 17
15 17 17

1A
γX =

„
11
11

«

Roundoff After Multiplication

Intermediate variables
Acc ← (xn(1) ∗ 19136);
Acc ← Acc + (xn(2) ∗ −27537) >> 1;
Acc ← Acc + (u ∗ 21179);
xnp(1)← Acc >> 15;
Acc ← (xn(1) ∗ 27537);
Acc ← Acc + (xn(2) ∗ 21470) >> 1;
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xnp(2)← Acc >> 16;
Outputs
Acc ← (xn(1) ∗ 21179);
Acc ← Acc + (xn(2) ∗ 31433) >> 2;
Acc ← Acc + (u ∗ 17184) >> 2;
y ← Acc >> 15;
Permutations
xn ← xnp;
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Fixed point implementation

ExampleExample

8<: X (k + 1) =
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0.58399 −0.42019
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0.64635
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γADD =

0@26
27
26

1A
γZ =

0@15 15 15
16 16 16
15 15 15

1A
γX =

„
11
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«

Roundoff Before Multiplication

Intermediate variables
Acc ← (xn(1) ∗ 19136);
Acc ← Acc + (xn(2) ∗ −13769);
Acc ← Acc + (u ∗ 21179);
xnp(1)← Acc >> 15;
Acc ← (xn(1) ∗ 27537);
Acc ← Acc + (xn(2) ∗ 10735);
Acc ← Acc + (u ∗ −15717);
xnp(2)← Acc >> 16;
Outputs
Acc ← (xn(1) ∗ 21179);
Acc ← Acc + (xn(2) ∗ 7858);
Acc ← Acc + (u ∗ 4296);
y ← Acc >> 15;
Permutations
xn ← xnp;
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Example

Optimal designOptimal design

It is possible to analytically describe equivalent classes of
realization (Inclusion Principle)

Equivalent realization

Consider a realization R0. All realizations R1 such that

0@−J1 M1 N1
K1 P1 Q1
L1 R1 S1

1A =

0@Y U−1

Ip

1A 0@−J0 M0 N0
K0 P0 Q0
L0 R0 S0

1A 0@W U
Im

1A

are equivalent (with U ∈ Rn×n, Y ∈ Rl×l and W ∈ Rl×l

non-singular matrices).

State-space : (A,B,C ,D)→ (T −1AT , T −1B,CT ,D)
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Example

Optimal designOptimal design

It is possible to analytically describe equivalent classes of
realization (Inclusion Principle)

Equivalent realization

Consider a realization R0. All realizations R1 such that

0@−J1 M1 N1
K1 P1 Q1
L1 R1 S1

1A =

0@Y U−1

Ip

1A 0@−J0 M0 N0
K0 P0 Q0
L0 R0 S0

1A 0@W U
Im

1A

are equivalent (with U ∈ Rn×n, Y ∈ Rl×l and W ∈ Rl×l

non-singular matrices).

Optimal realization problem

The optimal design problem consists in finding the realization Ropt

that minimizes J
Ropt = arg min

R∈RH

J (R)

T. Hilaire Bit Accurate Roundoff Noise Analysis of Fixed-Point Linear ControllersBit Accurate Roundoff Noise Analysis of Fixed-Point Linear Controllers 23/34



Example

ExampleExample

We consider the following low-pass butterworth filter

H(z) =
0.003622z2 + 0.007243z + 0.003622

z2 − 1.823z + 0.8372

And the following realizations

Z1: direct form II with shift-operator,

Z2: roundoff noise-optimal state-space realization,

Z3: roundoff noise-optimal δ-realization.

16 bits for the coefficients and variables. 32 bits for the
accumulator.
Roundoff Before Multiplication
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Example

ExampleExample

The optimizations are done with Adaptative Simulated Annealing
method.

realization Roundoff Nb. operations

Z1 3.914e − 3 4 + 5×
Z2 3.903e − 7 6 + 9×
Z3 3.540e − 7 8 + 11×
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ConclusionsConclusions

Conclusion

Some tools are exhibited to help to answer the question:
How optimally implement filter/controllers ?

Implicit state-space framework

Roundoff noise analysis

Two bit-accurate fixed-point implementation schemes

A Matlab’s toolbox (Finite Wordlength Realization Toolbox) was
developed, with some others Finite WordLength measures
(sensitivity):

http://fwrtoolbox.gforge.inria.fr
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Any questions ?
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ExampleExample

Roundoff Before Multiplication scheme.

16 bits for the coefficients, states, inputs, outputs,
intermediate variables

Accumulator 32 bits (with 4 guard bits)

Input format (16,11)

Output format (16,10)

± 2
1

2
0

2
−1... ...

.2β−γ−2

β − γ − 1

β

γ

2−γ

integer part fractional part

s
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ExampleExample

Direct Form Directe II
// intermediate variables
Acc← xn(1) * 5788 + xn(2) * -13703 + xn(3) * 17387 + xn(4) * -12469 + xn(5) * 4791 + xn(6) * -771 + u(i)
* 1;
xnp(1)← Acc >>10;
xnp(2)← xn(1);
xnp(3)← xn(2);
xnp(4)← xn(3);
xnp(5)← xn(4);
xnp(6)← xn(5);
// outputs
Acc← xn(1) * 6336 + xn(2) * -19119 + xn(3) * 16167 + xn(4) * 4681 + xn(5) * -12891 + xn(6) * 4886 + u(i)
* 1; y(i)← Acc >> 4;
// permutations
xn← xnp;
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ExempleExemple

Balanced state-space form
// intermediate variables
Acc← xn(1) * 32370 + xn(2) * -3673 + Acc0 + xn(3) * 42 + xn(4) * 873 + xn(5) * -171 + xn(6) * 51 + u(i) *
458;
xnp(1)← Acc >> 15;
Acc← xn(1) * 3688 + xn(2) * 31858 + xn(3) * 4405 + xn(4) * 785 + xn(5) * -451 + xn(6) * 74 + u(i) * -605;
xnp(2)← Acc >> 15;
Acc← xn(1) * 318 + xn(2) * -4416 + xn(3) * 31250 + xn(4) * -3922 + xn(5) * 499 + xn(6) * -120 + u(i) *
-790;
xnp(3)← Acc >> 15;
Acc← xn(1) * -900 + xn(2) * 546 + xn(3) * 3833 + xn(4) * 30304 + xn(5) * 1828 + xn(6) * -196 + u(i) * 742;
xnp(4)← Acc >> 15;
Acc← xn(1) * -551 + xn(2) * 1425 + xn(3) * 1760 + xn(4) * -7483 + xn(5) * 29956 + xn(6) * 1961 + u(i) *
868;
xnp(5)← Acc >> 15;
Acc← xn(1) * -786 + xn(2) * 1182 + xn(3) * 2572 + xn(4) * -4839 + xn(5) * -7995 + xn(6) * 29485 + u(i) *
956;
xnp(6)← Acc >> 15;
//outputs
Acc← xn(1) * 14733 + xn(2) * 21060 + xn(3) * -23783 + xn(4) * -22615 + xn(5) * 7488 + xn(6) * -1780 +
u(i) * 77;
y(i)← Acc >> 15;
// permutations
xn← xnp;
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ExempleExemple

Direct form II with δ-operator
// intermediate variables
Acc← xn(1) * -11383 + xn(2) * -31123 + xn(3) * -22773 + xn(4) * -13468 + xn(5) * -9425 + xn(6) * -1852 +
u(i) << 8;
T0← Acc >>13;
// states
Acc← T0 + xn(1) <<2;
xn(1)← Acc >>2;
Acc← xn(1) + xn(2) <<3;
xn(2)← Acc >>3;
Acc← xn(2) + xn(3) <<2;
xn(3)← Acc >>2;
Acc← xn(3) + xn(4) <<2;
xn(4)← Acc >>2;
Acc← xn(4) + xn(5) <<3;
xn(5)← Acc >>3;
Acc← xn(5) + xn(6) <<2;
xn(6)← Acc >>2; // outputs
Acc← xn(1) * 792 + xn(2) * 12559 + xn(3) * 12190 + xn(4) * 29211 + xn(5) * 22483 + xn(6) * 30784 + u(i)
* 19;
y(i)← Acc >>13 );
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ExempleExemple

Direct form II with δ-operator : Roundoff After Multiplication
// intermediate variables
Acc← (xn(1) * -22767) >> 1 + xn(2) * -31123 + xn(3) * -22773 +(xn(4) * -26936) >> 1 + (xn(5) * -18851)
>> 1 + (xn(6) * -29635) >> 4 + u(i) << 8;
T0← Acc >>13;
// states
Acc← T0 + xn(1) <<2;
xn(1)← Acc >>2;
Acc← xn(1) + xn(2) <<3;
xn(2)← Acc >>3;
Acc← xn(2) + xn(3) <<2;
xn(3)← Acc >>2;
Acc← xn(3) + xn(4) <<2;
xn(4)← Acc >>2;
Acc← xn(4) + xn(5) <<3;
xn(5)← Acc >>3;
Acc← xn(5) + xn(6) <<2;
xn(6)← Acc >>2; // outputs
Acc← (xn(1) * 25342) >> 5 + (xn(2) * 25118) >> 1 + (xn(3) * 24379) >> 1 + xn(4) * 29211 + xn(5) *
22483 + xn(6) * 30784 + (u(i) * 19746) >> 10;
y(i)← Acc >>13
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