
Interval-based Robustness of
Linear Parametrized Filters

A. Chapoutot, T. Hilaire, P. Chevrel

September 25th, 2012

Context – 1

implantation

01
00
10
11
01
01
01
00
01
01
11
10
10
10

Ciblesalgorithmes TS
Targets

Implementationimplantation

01
00
10
11
01
01
01
00
01
01
11
10
10
10

Ciblesalgorithmes TSFilters/Controllers
Algorithms

I Finite precision implementation (fixed-point arithmetic)
I Linear Time Invariant systems
I hardware (FPGA, ASIC) or software (DSP, µC)

Evaluate the robustness of the implemented filter
�Propose a methodology for the implementation of embedded
controllers with finite precision considerations

Context – 1

Implementationimplantation

01
00
10
11
01
01
01
00
01
01
11
10
10
10

Ciblesalgorithmes TS
Targets

implantation

01
00
10
11
01
01
01
00
01
01
11
10
10
10

Ciblesalgorithmes TSFilters/Controllers
Algorithms

I Finite precision implementation (fixed-point arithmetic)
I Linear Time Invariant systems
I hardware (FPGA, ASIC) or software (DSP, µC)

Evaluate the robustness of the implemented filter
�Propose a methodology for the implementation of embedded
controllers with finite precision considerations

Context – 1

implantation

01
00
10
11
01
01
01
00
01
01
11
10
10
10

Ciblesalgorithmes TS
Targets

Implementationimplantation

01
00
10
11
01
01
01
00
01
01
11
10
10
10

Ciblesalgorithmes TSFilters/Controllers
Algorithms

I Finite precision implementation (fixed-point arithmetic)
I Linear Time Invariant systems
I hardware (FPGA, ASIC) or software (DSP, µC)

Evaluate the robustness of the implemented filter
�Propose a methodology for the implementation of embedded
controllers with finite precision considerations

Context – 1

implantation

01
00
10
11
01
01
01
00
01
01
11
10
10
10

Ciblesalgorithmes TS
Targets

Implementationimplantation

01
00
10
11
01
01
01
00
01
01
11
10
10
10

Ciblesalgorithmes TSFilters/Controllers
Algorithms

I Finite precision implementation (fixed-point arithmetic)
I Linear Time Invariant systems
I hardware (FPGA, ASIC) or software (DSP, µC)

Evaluate the robustness of the implemented filter
�Propose a methodology for the implementation of embedded
controllers with finite precision considerations

Context – 1

implantation

01
00
10
11
01
01
01
00
01
01
11
10
10
10

Ciblesalgorithmes TS
Targets

Implementationimplantation

01
00
10
11
01
01
01
00
01
01
11
10
10
10

Ciblesalgorithmes TSFilters/Controllers
Algorithms

I Finite precision implementation (fixed-point arithmetic)
I Linear Time Invariant systems
I hardware (FPGA, ASIC) or software (DSP, µC)

Evaluate the robustness of the implemented filter
�Propose a methodology for the implementation of embedded
controllers with finite precision considerations

Context – 2

We are considering parametrized linear filters/controllers, i.e.
filters where the coefficients depend on extra parameters θ.

I These parameters are fixed, but unknown at implementation
and compile-time;

I We only know intervals [θ] they belong to;
I The coefficients are computed once in-situ at

initialization-time;

�this is widely used by car manufacturers in order to calibrate
controllers much more later in the development lifecycle.

Context – 2

We are considering parametrized linear filters/controllers, i.e.
filters where the coefficients depend on extra parameters θ.

I These parameters are fixed, but unknown at implementation
and compile-time;

I We only know intervals [θ] they belong to;
I The coefficients are computed once in-situ at

initialization-time;

�this is widely used by car manufacturers in order to calibrate
controllers much more later in the development lifecycle.

Parametrized filters

ROM coefficients
computation

u(k)

y(k)

Z†θ†
h†(z)

a) initialization

b) run-time

Initialization and execution

Outline

Running example

Quantification Error Formalization

Finding Maximal Quantification Error

Running example

Second order linear filter

We consider a continuous-time second order Butterworth filter.

Its transfer function is:

H(s) =
g

s2 + 2ξωcs + ω2
c
.

defined from 3 parameters:
I g the static gain;
I ξ the quality factor;
I ωc the cutoff pulsation.

Object of the study: a discrete version of this filter.

Discrete-time algorithm – 1

The equivalent discrete-time filter is

H(z) =
b0z2 + b1z + b2

a0z2 + a1z + a2

with
I b0 = gT 2, b1 = 2gT 2, b2 = gT 2

I a0 = 4ξωcT + ω2
cT

2 + 4, a1 = 2ω2
cT

2 − 8,
a2 = ω2

cT
2 − 4ξωcT + 4

To implement it, one can use Direct Form x(k + 1) =

(
−a1

a0
−a2

a0
1 0

)
x(k) +

(
1
0

)
u(k)

y(k) =
(

b1a0−b0a1
a2
0

b2a0−b0a2
a2
0

)
x(k) + b0

a0
u(k)

Discrete-time algorithm – 1

The equivalent discrete-time filter is

H(z) =
b0z2 + b1z + b2

a0z2 + a1z + a2

with
I b0 = gT 2, b1 = 2gT 2, b2 = gT 2

I a0 = 4ξωcT + ω2
cT

2 + 4, a1 = 2ω2
cT

2 − 8,
a2 = ω2

cT
2 − 4ξωcT + 4

To implement it, one can use Direct Form x(k + 1) =

(
−a1

a0
−a2

a0
1 0

)
x(k) +

(
1
0

)
u(k)

y(k) =
(

b1a0−b0a1
a2
0

b2a0−b0a2
a2
0

)
x(k) + b0

a0
u(k)

Discrete-time algorithm – 2

But it is also possible to use various other algorithms
I Or any other state-space form
I ρDirect Form II transposed
I cascade decomposition, parallel, lattice, LGC or LCW forms,

etc.

Remark
All these implementations are only equivalent in infinite
precision arithmetic

Our goal
We seek the implementation which is the closest in finite precision
than the infinite precision implementation.

Discrete-time algorithm – 2

But it is also possible to use various other algorithms
I Or any other state-space form
I ρDirect Form II transposed
I cascade decomposition, parallel, lattice, LGC or LCW forms,

etc.

Remark
All these implementations are only equivalent in infinite
precision arithmetic

Our goal
We seek the implementation which is the closest in finite precision
than the infinite precision implementation.

Setting simulation parameters

List of parameter values and uncertainties:
I π

I fc (cutoff frequency): 10.0± 20%
I fe (sampling frequency): 200.0± 1%
I ξ (quality factor): 0.5± 10%

Questions:
I What will be the impact of the quantization of these

parameters ?
I What set of parameters will give use the worst degradation ?

Setting simulation parameters

List of parameter values and uncertainties:
I π

I fc (cutoff frequency): 10.0± 20%
I fe (sampling frequency): 200.0± 1%
I ξ (quality factor): 0.5± 10%

Questions:
I What will be the impact of the quantization of these

parameters ?
I What set of parameters will give use the worst degradation ?

Quantification Error
Formalization

Formulation of the problem – 1

Notations:
I Z (θ) the matrix containing all the coefficients used by the

realization
I hZ(θ) the associated transfer function
I θ† the quantized version of θ
I Z†(θ†) is then the set of the quantized coefficients, i.e. the

quantization of coefficients Z (θ†) computed from the
quantized parameters θ†

I The corresponding transfer function is denoted hZ†(θ†).

Formulation of the problem – 2

For a given θ, the measure of the degradation of the finite precision
implementation is given by:

‖ hZ(θ) − hZ†(θ†) ‖�, with � ∈ {2,∞}

such that, for g : C→ C, we have:

I 2-Norm: ‖ g ‖2,
√

1
2π

∫ 2π
0 | g(e jω) |2 dω

I Max Norm: ‖ g ‖∞, maxω∈[0,2π] | g(e jω) |

Problem
We look for the worst-case parameters θ0 such that:

argmax
θ∈Θ
‖ hZ(θ) − hZ†(θ†) ‖�

Finding Maximal
Quantification Error

Interval global optimization approach

New formulation of the problem

Maximize ‖ [h]†Z†(θ†)
− [h]Z(θ) ‖� subject to θ ∈ [θ] .

such that [h] is a transfer function with interval coefficients.

To apply for example Hansen’s algorithm, we need:
I a sharp inclusion function for ‖ [h]†Z†(θ†)

− [h]Z(θ) ‖�

Inclusion functions – 1

Recall, for g : C→ C, we have:

I 2 Norm: ‖ g ‖2,
√

1
2π

∫ 2π
0 | g(e jω) |2 dω

I Max Norm: ‖ g ‖∞, maxω∈[0,2π] | g(e jω) |

In both cases, the first step is to compute | [g](e jω) |:
I either by using complex interval arithmetic;
I or real interval arithmetic after proper symbolic manipulations.

Inclusion functions – 2
We tried different approaches:

I Direct evaluation of [g](e jω) with Cartesian complex interval
form;

(too loosy)
I Rewriting |[g](e jω)| with symmetric and antisymmetric

decomposition (cos and sin), and evaluation with real
intervals; (development with sin and cos doesn’t help)

I Direct evaluation of [g](e jω) with polar complex interval form;
addition polar complex form very difficult – to be explored

more deeply, see J. Flores Complex Fans

A+B

A+B
(Real)

(Computed)

B

A

Inclusion functions – 2
We tried different approaches:

I Direct evaluation of [g](e jω) with Cartesian complex interval
form; (too loosy)

I Rewriting |[g](e jω)| with symmetric and antisymmetric
decomposition (cos and sin), and evaluation with real
intervals; (development with sin and cos doesn’t help)

I Direct evaluation of [g](e jω) with polar complex interval form;
addition polar complex form very difficult – to be explored

more deeply, see J. Flores Complex Fans

A+B

A+B
(Real)

(Computed)

B

A

Inclusion functions – 2
We tried different approaches:

I Direct evaluation of [g](e jω) with Cartesian complex interval
form; (too loosy)

I Rewriting |[g](e jω)| with symmetric and antisymmetric
decomposition (cos and sin), and evaluation with real
intervals;

(development with sin and cos doesn’t help)
I Direct evaluation of [g](e jω) with polar complex interval form;

addition polar complex form very difficult – to be explored
more deeply, see J. Flores Complex Fans

A+B

A+B
(Real)

(Computed)

B

A

Inclusion functions – 2
We tried different approaches:

I Direct evaluation of [g](e jω) with Cartesian complex interval
form; (too loosy)

I Rewriting |[g](e jω)| with symmetric and antisymmetric
decomposition (cos and sin), and evaluation with real
intervals; (development with sin and cos doesn’t help)

I Direct evaluation of [g](e jω) with polar complex interval form;

addition polar complex form very difficult – to be explored
more deeply, see J. Flores Complex Fans

A+B

A+B
(Real)

(Computed)

B

A

Inclusion functions – 2
We tried different approaches:

I Direct evaluation of [g](e jω) with Cartesian complex interval
form; (too loosy)

I Rewriting |[g](e jω)| with symmetric and antisymmetric
decomposition (cos and sin), and evaluation with real
intervals; (development with sin and cos doesn’t help)

I Direct evaluation of [g](e jω) with polar complex interval form;
addition polar complex form very difficult – to be explored

more deeply, see J. Flores Complex Fans

A+B

A+B
(Real)

(Computed)

B

A

Inclusion functions – 3

But also:
I Symbolic computation of [g](e jω) · [g](e jω)∗ and evaluation

with real interval arithmetic;

Generation of very long formula
which increases the problem of dependency (loosy results),
more work could be done to simplify this expression (e.g.
factorizing the common sub-expressions)

I For 2-norm, we can also use Lyapunov equation:
g(z) is put in form g(z) = c(zI − A)−1b + d and

‖ g ‖2=
√

tr(cWc> + d2) with W = AWA> + bb>

Here A and W are interval matrices.
Software Versoft (Rohn), based on Intlab (Rump) can deal
with Lyapunov equation to solve. But results too loosy, due
to dependency between coefs in A and b

Inclusion functions – 3

But also:
I Symbolic computation of [g](e jω) · [g](e jω)∗ and evaluation

with real interval arithmetic; Generation of very long formula
which increases the problem of dependency (loosy results),
more work could be done to simplify this expression (e.g.
factorizing the common sub-expressions)

I For 2-norm, we can also use Lyapunov equation:
g(z) is put in form g(z) = c(zI − A)−1b + d and

‖ g ‖2=
√

tr(cWc> + d2) with W = AWA> + bb>

Here A and W are interval matrices.
Software Versoft (Rohn), based on Intlab (Rump) can deal
with Lyapunov equation to solve. But results too loosy, due
to dependency between coefs in A and b

Inclusion functions – 3

But also:
I Symbolic computation of [g](e jω) · [g](e jω)∗ and evaluation

with real interval arithmetic; Generation of very long formula
which increases the problem of dependency (loosy results),
more work could be done to simplify this expression (e.g.
factorizing the common sub-expressions)

I For 2-norm, we can also use Lyapunov equation:
g(z) is put in form g(z) = c(zI − A)−1b + d and

‖ g ‖2=
√

tr(cWc> + d2) with W = AWA> + bb>

Here A and W are interval matrices.
Software Versoft (Rohn), based on Intlab (Rump) can deal
with Lyapunov equation to solve. But results too loosy, due
to dependency between coefs in A and b

Inclusion functions – 3

But also:
I Symbolic computation of [g](e jω) · [g](e jω)∗ and evaluation

with real interval arithmetic; Generation of very long formula
which increases the problem of dependency (loosy results),
more work could be done to simplify this expression (e.g.
factorizing the common sub-expressions)

I For 2-norm, we can also use Lyapunov equation:
g(z) is put in form g(z) = c(zI − A)−1b + d and

‖ g ‖2=
√

tr(cWc> + d2) with W = AWA> + bb>

Here A and W are interval matrices.
Software Versoft (Rohn), based on Intlab (Rump) can deal
with Lyapunov equation to solve. But results too loosy, due
to dependency between coefs in A and b

Global solver
Once the problem of the inclusion function solved, we will apply
Hansen’s algorithm1 whose main steps are:

Input: [f] inclusion function, X initial box, ε tolerance
Output: Y the sub-box associated to the minimal value of f .

Set Y := X
Compute [f](Y), f̃ := ub([f](mid(Y))), y := lb([f](Y))
Initialize list L := {(Y , y)}
(∗) Choose a coordinate direction k parallel to which Y has
an edge of maxim length

Bisect Y following k to get V1, V2 such that Y = V1 ∪ V2

Remove (Y , y) from L
Compute [f](V1), [f](V2) and vi = lb ([f](Vi)) for i = 1, 2
Enter pairs (V1, v1) and (V2, v2) at the end of L
Choose a pair (Ỹ , ỹ) in L such that ỹ ≤ z for all (Z , z)
Remove all (Z , z) such that f̃ ≤ z
If width(Y) ≤ ε end algorithm
Denote the first pair of L as (Y , y), f̃ = min(f̃ , ub ([f] (mid(Y))) go to (∗).

1“New computer method for global optimization” H. Ratschek and J. Rokne

Current state of our work
We did not find a satisfactory solution for the inclusion function !
In all cases, evaluation usually produces large and useless intervals
for ‖ [h]†Z†(θ†)

− [h]Z(θ) ‖�, event with small width interval
parameter values.
Moreover, a Monte-Carlo-like evaluation of ‖ [h]†Z†(θ†)

− [h]Z(θ) ‖�
with desired interval parameters showed us the inclusion function
should be more accurate.

Conclusion

Conclusion:
I the inclusion function is the most difficult problem to solve to

apply interval global optimization method

Perspective:
I use of affine arithmetic or Taylor arithmetic to define inclusion

function to avoid dependence problem.
I develop polar form interval arithmetic package
I or dedicated interval transfer-function evaluation techniques

	Running example
	Quantification Error Formalization
	Finding Maximal Quantification Error

