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On the first hand... A filter

h(z) =

Pn
i=0 biz

�i

1 +
Pn

i=1 aiz�i

Signal Processing
LTI filters: FIR or IIR
Its transfer function:

h(z) =

∑n
i=0 biz

−i

1 +
∑n

i=1 aiz
−i

Algorithmic relationship used to compute output(s) from
input(s), for example:

y(k) =
n∑

i=0

biu(k − i)−
n∑

i=1

aiy(k − i)
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On the other hand... A target
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Hardware target (FPGA, ASIC) or software target (DSP,µC)

Using fixed-point arithmetic for different reasons:

no FPU
cost
size
power consumption
etc.
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Need

Methodology and tools for the implementation of embedded filter
algorithms in fixed-point arithmetic.

A first (and basic) methodology

1 Given a filter, choose an algorithm

2 Round the coefficients in fixed-point arithmetic

3 Implement algorithm
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Need

Methodology and tools for the implementation of embedded filter
algorithms in fixed-point arithmetic.

A first (and basic) methodology

1 Given a filter, choose an algorithm

There are many possible realizations

2 Round the coefficients in fixed-point arithmetic

What format? Depends on the choice of algorithm

3 Implement algorithm

Is there only one possible implementation?
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From filter to code

This work is a part of a global approach, transforming filters into
fixed-point codes.

best
fixed-point

filter

pre-
implementation
measures

realization
optimization

adequacy
algorithm
architecture

fixed-point
evaluation
schemes

post-
implementation
measures

code
generationrealizationsfilters
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Objective:

Given an algorithm and a target, find the optimal implementation.

model the fixed-point algorithms

model the hardware resources (computational units, etc.)

evaluate the degradation

find one/some optimal implemented algorithm(s)
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Evaluation Scheme

The only operations needed in filter algorithm computation are
sum-of-products:

S =
n∑

i=1

ci · xi

where ci are known constants and xi variables (inputs, state or
intermediate variables).

Question:

How to implement S in fixed-point arithmetic?
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SoP Example

Let H be the transfer function of a butterworth filter of 4th−order:

H(z) =
0.00254078 + 0.01016312z−1 + 0.01524469z−2 + 0.01016312z−3 + 0.00254078z−4

1− 2.64402372z−1 + 2.77901148z−2 − 1.34558515z−3 + 0.25124989z−4

There are here 9 multiplications, so we have
∏8

i=1(2i − 1) ' 2
millions oSoPs to consider.

For example...
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1− 2.64402372z−1 + 2.77901148z−2 − 1.34558515z−3 + 0.25124989z−4

Associated algorithm (integer part on 16 bits):

y(k) = 21313.60743424× 2−23 × u(k) + 21313.60743424× 2−21 × u(k − 1)
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1− 2.64402372z−1 + 2.77901148z−2 − 1.34558515z−3 + 0.25124989z−4

Associated algorithm (round to nearest integer):
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In software, addition is commutative but maybe not associative

On 4 bits

0.5 =2 0•100
1.5 =2 01•10
4 =2 0100•

4 + (0.5 + 1.5) =2 010•0 + 0100• =2 0110• =10 6

(4 + 0.5) + 1.5 =2 0100• + 01•10 =2 0101• =10 5

Consider the order is important.

(a) = (b) but (a) 6= (c)
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oSoP

An evaluation scheme for a given SoP with a given order will be
called ordered-Sum-of-Products (oSoP).

Number of oSoPs

For a given SoP of Nth−order, there are
∏N−1

i=1 (2i − 1) possible
oSoPs to consider.
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SoP Example

Let H be the transfer function of a butterworth filter of 4th−order:
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1− 2.64402372z−1 + 2.77901148z−2 − 1.34558515z−3 + 0.25124989z−4
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oSoP Example 1

S

+

+

+

+

+

+

+

⇥

-16466

(16,0,16)

y[n � 4]

⇥

22046

(16,2,14)

y[n � 3]

⇥

21314

(16,-5,21)

u[n � 3]

⇥

31970

(16,-5,21)

u[n � 2]

⇥

21314

(16,-5,21)

u[n � 1]

⇥

21314

(16,-7,23)

u[n � 4]

⇥

21314

(16,-7,23)

u[n]

+

⇥

21660

(16,3,13)

y[n � 1]

⇥

-22766

(16,3,13)

y[n � 2]
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oSoP Example 2

S

+

+

+

+

+

⇥

-16466

(16,0,16)

y[n � 4]

⇥

22046

(16,2,14)

y[n � 3]

⇥

21314

(16,-5,21)

u[n � 1]

⇥

31970

(16,-5,21)

u[n � 2]

+

+

+

⇥

21660

(16,3,13)

y[n � 1]

⇥

-22766

(16,3,13)

y[n � 2]

⇥

21314

(16,-5,21)

u[n � 3]

⇥

21314

(16,-7,23)

u[n � 4]

⇥

21314

(16,-7,23)

u[n]
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oSoP

An evaluation scheme for a given SoP with a given order will be
called ordered-Sum-of-Products (oSoP).

Number of oSoPs

For a given SoP of Nth−order, there are
∏N−1

i=1 (2i − 1) possible
oSoPs to consider.

Question: Which oSoP should we choose?

To do this, we developed a tool that:

generates all possible oSoPs

propagates fixed-point representation

evaluates degradation errors
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Propagation

Fixed-Point propagation

FPR

Fixed-Point Representation (FPR) is defined as the tuple
(wordlength, integer part, fractional part).

What are the given (input) values?

FPR of constants ci ’s (given by wordlength and value of ci )

FPR of variables xi ’s

Wordlength of adders and multipliers

Final FPR

17/34



Context and Objectives Evaluation Schemes Conclusion

Propagation

S

+

+

×

21660

(16,3,13)

y [n − 1]

(16,5,11)

(32
, ,

)

×

-22766

(16,3,13)

y [n − 2]

(16,5,11)

(32, , )

(32, , )

+

+

+

+

×

31970

(16,-5,21)

u[n − 2]

(16,5,11)

(32
, ,

)

×

21314

(16,-5,21)

u[n − 3]

(16,5,11)

(32, , )

(32,
, )

+

+

×

21314

(16,-7,23)

u[n]

(16,5,11)

(3
2,
, )

×

21314

(16,-7,23)

u[n − 4]

(16,5,11)

(32, , )

(32
, ,

)

×

21314

(16,-5,21)

u[n − 1]

(16,5,11)

(32, , )

(32, , )

(32,
, )

×

-16466

(16,0,16)

y [n − 4]

(16,5,11)

(32, , )

(32,
, )

×

22046

(16,2,14)

y [n − 3]

(16,5,11)

(32, , )

(32, , )

(32, , )

(16,9,7)
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Propagation

Propagation Rules

From an oSoP parametrized with inputs FPR and wordlength, and
using some propagation rules on adders and multipliers, we obtain
a fully-parametrized oSoP.

Form the previous oSoP, we have the following fully-parametrized
oSoP...
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Propagation

S

>> 16

+

+

>> 1

×

21660

(16,3,13)

y [n − 1]

(16,5,11)

(32,8,24)

(32
,9,2

3)

>> 1

×

-22766

(16,3,13)

y [n − 2]

(16,5,11)

(32,8,24)

(32,9,23)

(32,9,23)

>> 1

+

>> 2

+

>> 4

+

>> 1

+

>> 1

×

31970

(16,-5,21)

u[n − 2]

(16,5,11)

(32,0,32)

(32
,1,3

1)

>> 1

×

21314

(16,-5,21)

u[n − 3]

(16,5,11)

(32,0,32)

(32,1,31)

(32,1,31)

(32,2,30
)

>> 1

+

>> 2

+

>> 1

×

21314

(16,-7,23)

u[n]

(16,5,11)

(32,-2,34)

(32
,-1,

33)

>> 1

×

21314

(16,-7,23)

u[n − 4]

(16,5,11)

(32,-2,34)

(32,-1,33)

(32,-1,33)

(32,1
,31)

>> 1

×

21314

(16,-5,21)

u[n − 1]

(16,5,11)

(32,0,32)

(32,1,31)

(32,1,31)

(32,2,30)

(32,2,30)

(32,6,26
)

>> 1

×

-16466

(16,0,16)

y [n − 4]

(16,5,11)

(32,5,27)

(32,6,26)

(32,6,26)

(32,8,2
4)

>> 1

×

22046

(16,2,14)

y [n − 3]

(16,5,11)

(32,7,25)

(32,8,24)

(32,8,24)

(32,9,23)

(32,9,23)

(16,9,7)
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Degradation errors

Fixed-Point computational errors

Question:

How to evaluate the numerical degradations?

Fixed-Point implementation implies numerical degradations, which
depend on:

the way the computations are organized

the fixed-point representation of all the signals used in the
computations

and the fixed-point representation of each step of the
operations

21/34
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Degradation errors

Noise

Usually in signal processing, we see degradation errors like additive
white uniformly distributed noises.

+�
⇠(k)

>> d

Right-shift of d bits:

For a right-shift of d bits, first (µ) and second (σ) order moment
are:

Truncation Best roundoff

µ 2−γ−1(1− 2−d) 2−γ−d−1

σ2 2−2γ

12 (1− 2−2d) 2−2γ

12 (1− 2−2d)
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Degradation errors

S

noise

+

+

noise

×

21660 y [n − 1]

noise

×

-22766 y [n − 2]

noise

+

noise

+

noise

+

noise

+

noise

×

31970 u[n − 2]

noise

×

21314 u[n − 3]

noise

+

noise

+

noise

×

21314 u[n]

noise

×

21314 u[n − 4]

noise

×

21314 u[n − 1]

noise

×

-16466 y [n − 4]

noise

×

22046 y [n − 3]
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Degradation errors

S

noise

+

+

×

21660 y [n − 1]

×

-22766 y [n − 2]

+

+

+

+

×

31970 u[n − 2]

×

21314 u[n − 3]

+

+

×

21314 u[n]

×

21314 u[n − 4]

×

21314 u[n − 1]

×

-16466 y [n − 4]

×

22046 y [n − 3]
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Degradation errors

Noise

Different noises are added through the tree

This cumulated noise can be viewed as output of a filter

y(k) =
n∑

i=0

biu(k − i)−
n∑

i=1

aiy(k − i)

y †(k) =
n∑

i=0

biu(k − i)−
n∑

i=1

aiy
†(k − i) + ξ(k)
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Degradation errors

Noise

Different noises are added through the tree

This cumulated noise can be viewed as output of a filter

e(k) , y †(k)− y(k) = ξ(k)−
n∑

i=1

aie(k − i)

hξ(z) =
1

1 +
n∑

i=1
aiz−i

25/34
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Degradation errors

Noise

Different noises are added through the tree

This cumulated noise can be viewed as output of a filter

+

u(k) y(k)

⇠(k) e(k) y†(k)

h

h⇠

25/34
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oSoP choice

Once we have evaluated degradations through our oSoPs, we want
to choose the best one.
There are different criteria to choose oSoPs, like:

noise

couple mean/variance

latency (infinite parallelism)

adequacy with hardware target

etc.
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Some options

Roundoff around multiplication

Roundoff After Multiplication (RAM)
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×
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+

>> 2

+

>> 4

+

>> 1

+

>> 1

×

31970

(16,-5,21)

u[n − 2]

(16,5,11)

(32,0,32)

(32
,1,3

1)
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21314
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u[n − 3]

(16,5,11)

(32,0,32)

(32,1,31)

(32,1,31)

(32,2,30
)

>> 1

+

>> 2

+

>> 1

×

21314

(16,-7,23)

u[n]

(16,5,11)

(32,-2,34)

(32
,-1,

33)

>> 1

×

21314

(16,-7,23)

u[n − 4]

(16,5,11)

(32,-2,34)

(32,-1,33)

(32,-1,33)

(32,1
,31)

>> 1

×

21314

(16,-5,21)

u[n − 1]

(16,5,11)

(32,0,32)

(32,1,31)

(32,1,31)

(32,2,30)

(32,2,30)

(32,6,26
)

>> 1

×

-16466

(16,0,16)

y [n − 4]

(16,5,11)

(32,5,27)

(32,6,26)

(32,6,26)

(32,8,2
4)

>> 1

×

22046

(16,2,14)

y [n − 3]

(16,5,11)

(32,7,25)

(32,8,24)

(32,8,24)

(32,9,23)

(32,9,23)

(16,9,7)
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Some options

Roundoff around multiplication

Roundoff After Multiplication (RAM)

Roundoff Before Multiplication (RBM)
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S

>> 16

+

+

×

>> 1

21660

(16,3,13)

(16,4,12)

y [n − 1]

(16,5,11)

(32,9,23)

×

>> 1

-22766

(16,3,13)

(16,4,12)

y [n − 2]

(16,5,11)

(32,9,23)

(32,9,23)

>> 1

+

>> 2

+

>> 4

+

>> 1

+

×

>> 1

31970

(16,-5,21)

(16,-4,20)

u[n − 2]

(16,5,11)

(32
,1,3

1)

×

>> 1

21314

(16,-5,21)

(16,-4,20)

u[n − 3]

(16,5,11)

(32,1,31)

(32,1,31)

(32,2,30
)

>> 1

+

>> 2

+

×

>> 1

21314

(16,-7,23)

(16,-6,22)

u[n]

(16,5,11)

(32
,-1,

33)

×

>> 1

21314

(16,-7,23)

(16,-6,22)

u[n − 4]

(16,5,11)

(32,-1,33)

(32,-1,33)

(32,
1,31

)

×

>> 1

21314

(16,-5,21)

(16,-4,20)

u[n − 1]

(16,5,11)

(32,1,31)

(32,1,31)

(32,2,30)

(32,2,30)

(32,6,26
)

×

>> 1

-16466

(16,0,16)

(16,1,15)

y [n − 4]

(16,5,11)

(32,6,26)

(32,6,26)

(32,8,2
4)

×

>> 1

22046

(16,2,14)

(16,3,13)

y [n − 3]

(16,5,11)

(32,8,24)

(32,8,24)

(32,9,23)

(32,9,23)

(16,9,7)
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Some options

Roundoff around multiplication

Roundoff After Multiplication (RAM)

Roundoff Before Multiplication (RBM)

Without shift

Target may oblige us to have no shifts. So, all shifts needed are
deferred to constants.
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Conclusion

We try to answer the following question:

For a given sum-of-products, how to produce optimal
implementation?

The main results are a tool and a methodology:

Model the various evaluation schemes

Propagate FPR through trees

Evaluate degradations

A lot of work still to be done:

Propagate intervals rather than FPR

Consider adequacy with hardware resources

Consider a more realistic model for degradation errors

Release the source code of our tool
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Thank You
Any Questions?
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