Sum-of-products Evaluation Schemes with
Fixed-Point arithmetic, and their application to |IR
filter implementation

Benoit Lopez - Thibault Hilaire - Laurent-Stéphane Didier
DASIP 2012
O

P U~PMC

MAAI SORBONNE

October 24th 2012

1/34

Outline

@ Context and Objectives

© Evaluation Schemes
@ Propagation
@ Degradation errors

© Conclusion

2/34

Context and Objectives

On the first hand... A filter

@ Signal Processing
o LTI filters: FIR or lIR
@ lts transfer function:
n —i
ha) = T8
i=19i

@ Algorithmic relationship used to compute output(s) from

input(s), for example:

y(k) = Z biju(k — i) — Zai}’(k — i)

3/34

Context and Objectives

On the other hand... A target

e Hardware target (FPGA, ASIC) or software target (DSP,u.C)
@ Using fixed-point arithmetic for different reasons:

no FPU

cost

size

power consumption

etc.

4/34

Context and Objectives

Methodology and tools for the implementation of embedded filter
algorithms in fixed-point arithmetic.

5/34

Context and Objectives

Methodology and tools for the implementation of embedded filter
algorithms in fixed-point arithmetic.

A first (and basic) methodology

@ Given a filter, choose an algorithm

@ Round the coefficients in fixed-point arithmetic

© Implement algorithm

N

5/34

Context and Objectives

Methodology and tools for the implementation of embedded filter
algorithms in fixed-point arithmetic.

A first (and basic) methodology

© Given a filter, choose an algorithm

o There are many possible realizations
@ Round the coefficients in fixed-point arithmetic

o What format? Depends on the choice of algorithm
© Implement algorithm

e Is there only one possible implementation?

Context and Objectives

From filter to code

This work is a part of a global approach, transforming filters into
fixed-point codes.

adequacy
algorithm
architecture

best
fixed-point
filter

fixed-point
evaluation
schemes

realization
optimization

filters realizations

pre- post-
implementation implementation
measures measures

6/34

Context and Objectives

From filter to code

This work is a part of a global approach, transforming filters into
fixed-point codes.

adequacy
algorithm
architecture

best
fixed-point
filter

fixed-point
evaluation
schemes

realization
optimization

filters realizations

pre- post-
implementation implementation
measures measures

6/34

Context and Objectives

Objective:

Given an algorithm and a target, find the optimal implementation.

@ model the fixed-point algorithms

@ model the hardware resources (computational units, etc.)

7/34

Context and Objectives

Objective:

Given an algorithm and a target, find the optimal implementation.

@ model the fixed-point algorithms
@ model the hardware resources (computational units, etc.)
@ evaluate the degradation

e find one/some optimal implemented algorithm(s)

7/34

Evaluation Schemes

Outline

© Evaluation Schemes

8/34

Evaluation Schemes

Evaluation Scheme

The only operations needed in filter algorithm computation are

sum-of-products:
n
S= Z Ci* Xj
i=1

where ¢; are known constants and x; variables (inputs, state or
intermediate variables).

9/34

Evaluation Schemes

Evaluation Scheme

The only operations needed in filter algorithm computation are

sum-of-products:
n
S= Z Ci* Xj
i=1

where ¢; are known constants and x; variables (inputs, state or
intermediate variables).

How to implement S in fixed-point arithmetic?

9/34

Evaluation Schemes

SoP Example

Let H be the transfer function of a butterworth filter of 4" —order:

H(z) 0.00254078 + 0.01016312z~1 4 0.01524469z~2 + 0.01016312z~3 + 0.00254078z*
Z) =
1 — 2.64402372z—1 + 2.779011482z—2 — 1.345585152z—3 + 0.25124989z—4

10/34

Evaluation Schemes

SoP Example

Let H be the transfer function of a butterworth filter of 4" —order:

0.00254078 + 0.01016312z~1 + 0.01524469z~2 + 0.01016312z~3 4 0.00254078z*
1 — 2.64402372z—1 + 2.77901148z—2 — 1.345585152—3 + 0.25124989z—*

H(z) =

Associated algorithm (Direct Form 1):

y(k) = 0.00254078 u(k) + 0.01016312z u(k — 1) 4 0.015244697 u(k — 2)
+0.010163127 u(k — 3) + 0.00254078 u(k — 4) + 2.64402372 y(k — 1)
—2.77901148 y(k — 2) + 1.34558515 y(k — 3) — 0.25124989 y(k — 4)

10/34

Evaluation Schemes

SoP Example

Let H be the transfer function of a butterworth filter of 4" —order:

H(z) = 0.00254078 + 0.01016312z~1 + 0.01524469z—2 4 0.01016312z 3 4- 0.00254078z—*
B 1 —2.64402372z~1 + 2.77901148z—2 — 1.34558515z—3 + 0.25124989z—*

Associated algorithm (integer part on 16 bits):

y(k) = 21313.60743424 x 272 x u(k) + 21313.60743424 x 272 x u(k — 1)
431970.43212288 x 272! x u(k — 2) + 21313.60743424 x 2721 x u(k — 3)
421313.60743424 x 2723 x u(k — 4) + 21659.84231424 x 2713 x y(k — 1)
—22765.66204416 x 2713 x y(k — 2) + 22046.0670976 x 2~1* x y(k — 3)
—16465.91279104 x 2716 x y(k — 4)

10/34

Evaluation Schemes

SoP Example

Let H be the transfer function of a butterworth filter of 4" —order:

H(z) = 0.00254078 + 0.01016312z~1 + 0.01524469z—2 4 0.01016312z 3 4- 0.00254078z—*
B 1 —2.64402372z~1 + 2.77901148z—2 — 1.34558515z—3 + 0.25124989z—*

Associated algorithm (round to nearest integer):

y(k) = 21314x273 x u(k)+21314x272 x u(k —
+31970x27 2 x u(k — 2)+21314x27 2 x u(k — 3)
+21314%x273 x u(k — 4)4+21660x2713 x y(k — 1)
—22766x2713 x y(k — 2)422046x271* x y(k — 3)
—16466x2710 x y(k — 4)

10/34

Evaluation Schemes

In software, addition is commutative but maybe not associative

05 =5 06100
1.5 = 01,10
4 = 0100

11/34

Evaluation Schemes

In software, addition is commutative but maybe not associative

On 4 bits

05 =5 06100

1.5 = 01,10

4 = 0100
4+ (0.5+ 1.5) =3 0100 + 01004 = 0110s =10 6
(4+0.5) + 1.5 =5 0100 + 01410 = 01014 =109 5

11/34

Evaluation Schemes

In software, addition is commutative but maybe not associative

On 4 bits

05 => 04100

15 =, 01,10

4 = 0100,
4+ (0.5+ 1.5) =5 01040 + 0100s = 01104 =10 6
(44 0.5) + 1.5 =, 01004 + 01410 =5 01014 =10 5
Consider the order is important.

11/34

Evaluation Schemes

An evaluation scheme for a given SoP with a given order will be
called ordered-Sum-of-Products (oSoP).

Number of 0SoPs

| \

For a given SoP of N —order, there are [i_;"(2i — 1) possible
0SoPs to consider.

A\

12/34

Evaluation Schemes

SoP Example

Let H be the transfer function of a butterworth filter of 4" —order:

H(z) 0.00254078 + 0.01016312z~! + 0.01524469z 2 + 0.01016312z~3 + 0.00254078z*
z) =
1 —2.64402372z~1 + 2.77901148z—2 — 1.34558515z—3 + 0.25124989z—*

Associated algorithm:

y(k) = 21314 x 278 x u(k) + 21314 x 272 x u(k — 1)
+31970 x 272 x u(k — 2) + 21314 x 272 x u(k — 3)
421314 x 278 x u(k — 4) + 21660 x 2713 x y(k — 1)
—22766 x 2713 x y(k — 2) 422046 x 271 x y(k — 3)
—16466 x 2710 x y(k — 4)

There are here 9 multiplications, so we have [[5_;(2i — 1) ~ 2
millions 0SoPs to consider.

For example...

13/34

Evaluation Schemes

0SoP Example 1

14/34

Evaluation Schemes

0SoP Example 2

)

(16,7.23

15/34

Evaluation Schemes

oSoP

An evaluation scheme for a given SoP with a given order will be
called ordered-Sum-of-Products (oSoP).

Number of 0SoPs

For a given SoP of N —order, there are [i_;"(2i — 1) possible
0SoPs to consider.

Question: Which 0SoP should we choose?

To do this, we developed a tool that:
@ generates all possible 0SoPs
@ propagates fixed-point representation

@ evaluates degradation errors

16/34

Evaluation Schemes
®000

Propagation

Fixed-Point propagation

FPR

Fixed-Point Representation (FPR) is defined as the tuple
(wordlength, integer part, fractional part).

What are the given (input) values?

@ FPR of constants ¢;'s (given by wordlength and value of ¢;)
@ FPR of variables x;'s

@ Wordlength of adders and multipliers

e Final FPR

17/34

Propagation

Evaluation Schemes
0®00

S
(16,9,7)
o
(32,,)
32..) v (32,)
R - Q&) +
2 v,
@) @ D) G2)
x x
(16,3,13) (16,5,11) (16,3,13) (16,5,11) + x
@))
(16,2,14) (16,5,11)
x
= - = : @ @
(16,0,16) (16,5,11)
VO y SO
@) @ 2) -16466
: = + X
(16,-5,21) (16,5,11) (16,-5,21) (16,5,11) 0) &
o J (16,-5,21) (16,5,11)

©¢)) :
(16,7,23) (16,5,11) (167,23) (15‘5,11) @

18/34

Evaluation Schemes
ooeo

Propagation

Propagation Rules

From an oSoP parametrized with inputs FPR and wordlength, and
using some propagation rules on adders and multipliers, we obtain
a fully-parametrized oSoP.

Form the previous 0SoP, we have the following fully-parametrized
oSoP...

19/34

Propagation

Evaluation Schemes
oooe

s
(16,9.7)
5>16
(32,9,23)
(329.23) u (32,9,23)
g7_3\ + &N
@2 923 (32,8,24)
2820 - (2520
(32.8,24) (32.8,24)
% %
(16,3,13) (16,5,11) (16,3,13) (16,5,11) (32.620) (32.7.:25)
(326:26) + (326,26 =
(16.2,14)/ \(16,5.11)
(32.2,30) (3255.27)
(32239 + (22,3 &
(16,0,16)/ \(16,5.11)
(32.1,31) (32,1,31) 466
) (. 4
@b 3 27, 3) @3 5y (213)
(32.0,32) , (32,-1,33) (32,0,32)
X X 1/\;53\ 4= {33‘13 X
(16,5.21)/ \(165,11) (16,-5.21)/ \(165,11) e) (16,5,21)/ \(16,5.11)
(32,-2,34) (32,2,34)
x x
(16,-7,23) (165.11) (16-7.23)/ \(16,5,11)

20/34

Evaluation Schemes
©0000

Degradation errors

Fixed-Point computational errors

How to evaluate the numerical degradations?

Fixed-Point implementation implies numerical degradations, which
depend on:

@ the way the computations are organized

@ the fixed-point representation of all the signals used in the
computations

@ and the fixed-point representation of each step of the
operations

21/34

Evaluation Schemes
0®000

Degradation errors

Noise

Usually in signal processing, we see degradation errors like additive
white uniformly distributed noises.

§(k)

Right-shift of d bits:

For a right-shift of d bits, first (1) and second (o) order moment
are:

Truncation Best roundoff
p | 277711 —279) 2 = dt

s 2;;7 (1 _ 2—2d) 2;;7 (1 _ 2—2d)

22/34

Evaluation Schemes
00e@00

Degradation errors

g
[noise
+
+ [oise]
[oise] [noise] ¢
x x [noise] [noise]
() (e + X
+ x
[noise] [noise] .
6466
+ +
[noise [noise [noise] [noise]
x x + x

) S py 3 @
: :

23/34

Evaluation Schemes
000®0

Degradation errors

24/34

Evaluation Schemes
ooooe

Degradation errors

Noise

@ Different noises are added through the tree
@ This cumulated noise can be viewed as output of a filter

=Y bk —i) = ay(k i)
i=0 i=1
:Zb;u(k—l Za/y = +§(k)
i=0

25/34

Evaluation Schemes
ooooe

Degradation errors

Noise

@ Different noises are added through the tree
@ This cumulated noise can be viewed as output of a filter

25/34

Evaluation Schemes
ooooe

Degradation errors

Noise

@ Different noises are added through the tree J

@ This cumulated noise can be viewed as output of a filter

25/34

Evaluation Schemes
[Jelelolole}

0SoP choice

Once we have evaluated degradations through our 0SoPs, we want
to choose the best one.
There are different criteria to choose 0SoPs, like:
@ noise
e couple mean/variance

26/34

Evaluation Schemes
[Jelelolole}

0SoP choice

Once we have evaluated degradations through our 0SoPs, we want
to choose the best one.
There are different criteria to choose 0SoPs, like:

@ noise

@ latency (infinite parallelism)

o height of the syntax tree
e depending on the number of operators of the target

26/34

Evaluation Schemes
[Jelelolole}

0SoP choice

Once we have evaluated degradations through our 0SoPs, we want
to choose the best one.
There are different criteria to choose 0SoPs, like:

@ noise

e latency (infinite parallelism)

@ adequacy with hardware target

e number of operators
e wordlength of operators
e etc.

26/34

Evaluation Schemes
[Jelelolole}

0SoP choice

Once we have evaluated degradations through our 0SoPs, we want
to choose the best one.
There are different criteria to choose 0SoPs, like:

@ noise

e latency (infinite parallelism)

@ adequacy with hardware target
°

etc.

26/34

Evaluation Schemes
0®0000

Some options

Roundoff around multiplication
@ Roundoff After Multiplication (RAM)

27/34

Evaluation Schemes
[e]eY Yolole}

s
(16,9.7)
>>16
(329,23)
(329.23) u (32,9,23)
g7_3\ + &N
@2 923 (32,8,24)
@22 - (2624
(32.8,24) (32.8,24)
2 2
(16,3,13) (16,5,11) (16,3,13) (16,5,11) (32.620) (32.7.:25)
(326:26) + (326,26 =
(16,2,14) (16,5,11)
(32,2,30) (32.5.27)
(32239 + (322,39 X
(16,0,16) (16,5,11)
(321,31) (32,1,31) -16466
) (. 4
@ 3 2.4, 3 @ 31 (3275 1)
(32.0,32) (32.0,32) : (32.0,32)
X X 1/\;53\ + NER 73 X
(16,-5,21) (16,5,11) (165,21) (16,5,11) e) (16.-5,21) (16,5,11)
(32.-234) (32.-2,34)
x x
(16,-7,23) (16,5,11) (16,7,23) (16,5,11)

28/34

Evaluation Schemes
000®00

Some options

Roundoff around multiplication
@ Roundoff After Multiplication (RAM)
@ Roundoff Before Multiplication (RBM)

29/34

s
(16,9.7)
(32,9,23)
(32.9.23) > (32,9,23)
G
(329,23 32,9,23) (32,8,24)
x x (32824 T (328,24
(16,4,12 .5, 16,4,12
), (16,5,11) () (16,5,11)
(32.6.26)
(16313 6. (16,3,13),
(32629) + (326,25
(16,2,14)
>
(32,2,30) (16,1,15) (16,5,11)
(32239 + (322,39 1
(16,0,16)
(32,1,31) (321,31) I
2 (32
Ny 13y) (3.
S) \37-3"3 2'131)
x x
(16,-4,20) (16,5,11) (164,20, (16,5,11) 133) e
>> 1 >> 1 - @ ‘(3‘ (16.-4,20) (16,5,11)
16,-5,21 16,-5,21 . 2.
() () @ 133) S
@ " (16,-5,21)
(16,-6,22), (16,5,11) (16,-6,22), (16,5,11)
(16,7,23)

@ (16,-7,23)

Evaluation Schemes
00000

(16,5,11)

30/34

Evaluation Schemes
eleleTolo] }

Some options

Roundoff around multiplication

@ Roundoff After Multiplication (RAM)
@ Roundoff Before Multiplication (RBM)

v

Without shift

Target may oblige us to have no shifts. So, all shifts needed are
deferred to constants.

\

31/34

Conclusion

Outline

© Conclusion

32/34

Conclusion

Conclusion

We try to answer the following question:

For a given sum-of-products, how to produce optimal
implementation?

The main results are a tool and a methodology:
@ Model the various evaluation schemes
@ Propagate FPR through trees

o Evaluate degradations

33/34

Conclusion

Conclusion

We try to answer the following question:

For a given sum-of-products, how to produce optimal
implementation?

The main results are a tool and a methodology:
@ Model the various evaluation schemes
@ Propagate FPR through trees
o Evaluate degradations
A lot of work still to be done:
o Propagate intervals rather than FPR
o Consider adequacy with hardware resources
@ Consider a more realistic model for degradation errors
°

Release the source code of our tool
33/34

Thank You

Any Questions?

34/34

	Context and Objectives
	Evaluation Schemes
	Propagation
	Degradation errors

	Conclusion

