
Context and Objectives Bits Formatting Conclusion

Formatting bits to better implement signal
processing algorithms

Benoit Lopez - Thibault Hilaire - Laurent-Stéphane Didier
PECCS 2014

January 9th 2014

1/20

Context and Objectives Bits Formatting Conclusion

Outline

1 Context and Objectives

2 Bits Formatting

3 Conclusion

2/20

Context and Objectives Bits Formatting Conclusion

In PECCS’14

Smartphone applications, measurement applications, embedded
devices, ...

Implementation problem

We need methodology and tools for the implementation of
embedded filter algorithms with only integer arithmetic.

3/20

Context and Objectives Bits Formatting Conclusion

In PECCS’14

Smartphone applications, measurement applications, embedded
devices, ...

Implementation problem

We need methodology and tools for the implementation of
embedded filter algorithms with only integer arithmetic.

3/20

Context and Objectives Bits Formatting Conclusion

On the first hand... A filter

+

z�1

z�1

z�1

z�1

z�1

z�1

b1

b1

b2

b3 a3

a2

a1

x[n] y[n]
+

z�1

z�1

z�1

x[n] y[n]
b0

b1

b2

b3

+

+

+

+

+

�a3

�a2

�a1

z�1

z�1

z�1

h(z) =

Pn
i=0 biz

�i

1 +
Pn

i=1 aiz�i

Signal Processing
LTI filters: FIR or IIR
Its transfer function
Algorithmic relationship used to compute output(s) from
input(s), for example:

y(k) =
n∑

i=0

biu(k − i)−
n∑

i=1

aiy(k − i)

4/20

Context and Objectives Bits Formatting Conclusion

On the other hand... A target

±

. . .

. . .

2
��

2
0

2
↵�2

s �↵

�

Hardware target (FPGA, ASIC) or software target (DSP,µC)

Due to resources constraints (cost, size, power consumption,
...) we have no FPU, so we can only use fixed-point arithmetic

5/20

Context and Objectives Bits Formatting Conclusion

Fixed-Point Arithmetic

Fixed-Point number

Fixed-point numbers are integers used to approximate real
numbers.

Xm X0 X−1 X`

w

−2m 20 2−12m−1 2`

Representation : X .2` with X = XmXm−1...X0...X`.

Format : determined by wordlength and fixed-point position,
and noted for example (m, `).

Computation in finite precision and choice of formats imply errors.

Numerical degradations

quantization of the coefficients

round-off errors in computations

6/20

Context and Objectives Bits Formatting Conclusion

Fixed-Point Arithmetic

Fixed-Point number

Fixed-point numbers are integers used to approximate real
numbers.

Xm X0 X−1 X`

w

−2m 20 2−12m−1 2`

Representation : X .2` with X = XmXm−1...X0...X`.

Format : determined by wordlength and fixed-point position,
and noted for example (m, `).

Computation in finite precision and choice of formats imply errors.

Numerical degradations

quantization of the coefficients

round-off errors in computations

6/20

Context and Objectives Bits Formatting Conclusion

Filter

IIR Filter

Let H be the transfer function of a n − th order IIR filter :

H(z) =
b0 + b1z

−1 + · · ·+ bnz
−n

1 + a1z−1 + · · ·+ anz−n
, ∀z ∈ C. (1)

This filter is usually realized with the following algorithm

y(k) =
n∑

i=0

biu(k − i)−
n∑

i=1

aiy(k − i) (2)

where u(k) is the input at step k and y(k) the output at step k.
We can see round-off errors as the add of an error e(k) on the
output and only y †(k) can be computed.

y †(k) =
n∑

i=0

biu(k − i)−
n∑

i=1

aiy
†(k − i) + e(k). (3)

7/20

Context and Objectives Bits Formatting Conclusion

Filter

IIR Filter

Let H be the transfer function of a n − th order IIR filter :

H(z) =
b0 + b1z

−1 + · · ·+ bnz
−n

1 + a1z−1 + · · ·+ anz−n
, ∀z ∈ C. (1)

This filter is usually realized with the following algorithm

y(k) =
n∑

i=0

biu(k − i)−
n∑

i=1

aiy(k − i) (2)

where u(k) is the input at step k and y(k) the output at step k.

We can see round-off errors as the add of an error e(k) on the
output and only y †(k) can be computed.

y †(k) =
n∑

i=0

biu(k − i)−
n∑

i=1

aiy
†(k − i) + e(k). (3)

7/20

Context and Objectives Bits Formatting Conclusion

Filter

IIR Filter

Let H be the transfer function of a n − th order IIR filter :

H(z) =
b0 + b1z

−1 + · · ·+ bnz
−n

1 + a1z−1 + · · ·+ anz−n
, ∀z ∈ C. (1)

This filter is usually realized with the following algorithm

y(k) =
n∑

i=0

biu(k − i)−
n∑

i=1

aiy(k − i) (2)

where u(k) is the input at step k and y(k) the output at step k.
We can see round-off errors as the add of an error e(k) on the
output and only y †(k) can be computed.

y †(k) =
n∑

i=0

biu(k − i)−
n∑

i=1

aiy
†(k − i) + e(k). (3)

7/20

Context and Objectives Bits Formatting Conclusion

Filter

+

H

He

u(k)

e(k) ∆y(k) y†(k)

y(k)

∆y(k) , y †(k)− y(k) can be seen as the result of the error
through the filter He :

He(z) =
1

1 + a1z−1 + · · ·+ anz−n
, ∀z ∈ C.

If the error e(k) is in [e; e], then we are able to compute ∆y and

∆y such that ∆y(k) is in [∆y ; ∆y] :

∆y =
e + e

2
|He |DC −

e − e

2
‖He‖`∞

∆y =
e + e

2
|He |DC +

e − e

2
‖He‖`∞

8/20

Context and Objectives Bits Formatting Conclusion

Filter

+

H

He

u(k)

e(k) ∆y(k) y†(k)

y(k)

∆y(k) , y †(k)− y(k) can be seen as the result of the error
through the filter He :

He(z) =
1

1 + a1z−1 + · · ·+ anz−n
, ∀z ∈ C.

If the error e(k) is in [e; e], then we are able to compute ∆y and

∆y such that ∆y(k) is in [∆y ; ∆y] :

∆y =
e + e

2
|He |DC −

e − e

2
‖He‖`∞

∆y =
e + e

2
|He |DC +

e − e

2
‖He‖`∞

8/20

Context and Objectives Bits Formatting Conclusion

Objective

Fixed-Point implementation and especially the choice of formats,
imply errors.
In the context of digital signal processing, we are able to control
these errors.

Objective:

Given an algorithm and a bound on the final error, find an
implementation which reduces the number of bits of the
computation while controlling the error on the output result.

9/20

Context and Objectives Bits Formatting Conclusion

Objective

Fixed-Point implementation and especially the choice of formats,
imply errors.
In the context of digital signal processing, we are able to control
these errors.

Objective:

Given an algorithm and a bound on the final error, find an
implementation which reduces the number of bits of the
computation while controlling the error on the output result.

9/20

Context and Objectives Bits Formatting Conclusion

Outline

1 Context and Objectives

2 Bits Formatting

3 Conclusion

10/20

Context and Objectives Bits Formatting Conclusion

Sum-of-Products

The only operations needed in filter algorithm computation are
sum-of-products:

s =
n∑

i=1

ci · xi =
n∑

i=1

pi

where ci are known constants and xi variables (inputs, state or
intermediate variables).

In the context of filter design, we know the fixed-point format
of the final result.

11/20

Context and Objectives Bits Formatting Conclusion

Formatting

s

s

s

s

s

s

s s

s sf

Context

A sum of N terms (pi)1≤i≤N with different formats, and the known
FPF of final result (sf), less than total wordlength (s).

Questions:

Can we remove bits that don’t impact the final result ? If we want
a faithful round-off of the final result, can we remove some bits ?

12/20

Context and Objectives Bits Formatting Conclusion

Formatting

s

s

s

s

s

s

s s

s sf

Context

A sum of N terms (pi)1≤i≤N with different formats, and the known
FPF of final result (sf), less than total wordlength (s).

Questions:

Can we remove bits that don’t impact the final result ? If we want
a faithful round-off of the final result, can we remove some bits ?

12/20

Context and Objectives Bits Formatting Conclusion

Formatting

s

s

s

s

s

s

s s

s sf

Two-step formatting

1 most significant bits

2 least significant bits

12/20

Context and Objectives Bits Formatting Conclusion

MSB formatting

Jacskon’s Rule (1979)

This Rule states that in consecutive additions and/or subtractions
in two’s complement arithmetic, some intermediate results and
operands may overflow. As long as the final result representation
can handle the final result without overflow, then the result is valid.

Example :

We want to compute 104 + 82− 94 with 8 bits :
104 + 82 = −70 overflow !
but −70− 94 = 92 overflow !
This second overflow cancels the first one and we obtain the
expected result.

13/20

Context and Objectives Bits Formatting Conclusion

MSB formatting

Jacskon’s Rule (1979)

This Rule states that in consecutive additions and/or subtractions
in two’s complement arithmetic, some intermediate results and
operands may overflow. As long as the final result representation
can handle the final result without overflow, then the result is valid.

Example :

We want to compute 104 + 82− 94 with 8 bits :

104 + 82 = −70 overflow !
but −70− 94 = 92 overflow !
This second overflow cancels the first one and we obtain the
expected result.

13/20

Context and Objectives Bits Formatting Conclusion

MSB formatting

Jacskon’s Rule (1979)

This Rule states that in consecutive additions and/or subtractions
in two’s complement arithmetic, some intermediate results and
operands may overflow. As long as the final result representation
can handle the final result without overflow, then the result is valid.

Example :

We want to compute 104 + 82− 94 with 8 bits :
104 + 82 = −70 overflow !

but −70− 94 = 92 overflow !
This second overflow cancels the first one and we obtain the
expected result.

13/20

Context and Objectives Bits Formatting Conclusion

MSB formatting

Jacskon’s Rule (1979)

This Rule states that in consecutive additions and/or subtractions
in two’s complement arithmetic, some intermediate results and
operands may overflow. As long as the final result representation
can handle the final result without overflow, then the result is valid.

Example :

We want to compute 104 + 82− 94 with 8 bits :
104 + 82 = −70 overflow !
but −70− 94 = 92 overflow !
This second overflow cancels the first one and we obtain the
expected result.

13/20

Context and Objectives Bits Formatting Conclusion

MSB formatting

Fixed-Point Jacskon’s Rule

Let s be a sum of n fixed-point number pi s, in format (M, L). If s
is known to have a final MSB equals to mf with mf < M, then:

s =

mf +1⊕

1≤i≤n

mf∑

j=L

2jpi ,j

s

s

s

s

s

s

s s

s sfM L
mf

14/20

Context and Objectives Bits Formatting Conclusion

MSB formatting

Fixed-Point Jacskon’s Rule

Let s be a sum of n fixed-point number pi s, in format (M, L). If s
is known to have a final MSB equals to mf with mf < M, then:

s =

mf +1⊕

1≤i≤n

mf∑

j=L

2jpi ,j

s

s

s

s

s

s

s s s s

s sfM L
mf

14/20

Context and Objectives Bits Formatting Conclusion

LSB formatting

LSB Formatting main idea

s

s

s

s

s

s

s s

s sf

15/20

Context and Objectives Bits Formatting Conclusion

LSB formatting

LSB Formatting main idea

s

s

s

s

s

s

s s

s sf

If we remove some bits, we will not compute sf anymore but a
faithful round-off of sf can be acceptable.

15/20

Context and Objectives Bits Formatting Conclusion

LSB formatting

LSB Formatting main idea

s

s

s

s

s

s

δ
s sδ

s s ′f

Can we determine a minimal δ such that s ′f is always a faithful
round-off of sf ?

15/20

Context and Objectives Bits Formatting Conclusion

LSB formatting

LSB Formatting main idea

s

s

s

s

s

s

δ
s sδ

s s ′f

δ evaluation

For both rounding mode (round-to-nearest or truncation), the
smallest integer δ that provides s ′f = ?lf (sf) is given by:

δ = dlog2(n)e
15/20

Context and Objectives Bits Formatting Conclusion

Formatting

Formatting method

s

s

s

s

s

s

s s

s sf

1 we compute δ

2 we format all pi s into FPF (mf , lf − δ)

3 we compute sδ
4 we obtain s ′f from sδ

16/20

Context and Objectives Bits Formatting Conclusion

Formatting

Formatting method

s

s

s

s

s

s

δ
s sδ

s s ′f

1 we compute δ

2 we format all pi s into FPF (mf , lf − δ)

3 we compute sδ
4 we obtain s ′f from sδ

16/20

Context and Objectives Bits Formatting Conclusion

Formatting

Formatting method

s

s

s

s

δ
s sδ

s s ′f

1 we compute δ

2 we format all pi s into FPF (mf , lf − δ)

3 we compute sδ

4 we obtain s ′f from sδ

16/20

Context and Objectives Bits Formatting Conclusion

Formatting

Formatting method

s

s

s

s

δ
s sδ

s s ′f

1 we compute δ

2 we format all pi s into FPF (mf , lf − δ)

3 we compute sδ
4 we obtain s ′f from sδ

16/20

Context and Objectives Bits Formatting Conclusion

Formatting

Example

The following algorithm is the fixed-point algorithm of a 4th−order
butterworth filter:

y(k) = 0.0013279914856 u(k) + 0.00531196594238 u(k − 1)

+0.00796794891357 u(k − 2) + 0.00531196594238 u(k − 3)

+0.0013279914856 u(k − 4) + 2.87109375 y(k − 1)

−3.20825195312 y(k − 2) + 1.63458251953 y(k − 3)

−0.318710327148 y(k − 4)

Inputs datas :

wordlength of constants, u(k) and y(k) : 16 bits

u(k) ∈ [−13, 13]

and y(k) ∈ [−17.123541; 17.123541]

17/20

Context and Objectives Bits Formatting Conclusion

Formatting

Example

The following algorithm is the fixed-point algorithm of a 4th−order
butterworth filter:

y(k) = 0.0013279914856 u(k) + 0.00531196594238 u(k − 1)

+0.00796794891357 u(k − 2) + 0.00531196594238 u(k − 3)

+0.0013279914856 u(k − 4) + 2.87109375 y(k − 1)

−3.20825195312 y(k − 2) + 1.63458251953 y(k − 3)

−0.318710327148 y(k − 4)

Inputs datas :

wordlength of constants, u(k) and y(k) : 16 bits

u(k) ∈ [−13, 13] and y(k) ∈ [−17.123541; 17.123541]
17/20

Context and Objectives Bits Formatting Conclusion

Formatting

Example

s

s

s

s

s

s

s

s

s

s

s

18/20

Context and Objectives Bits Formatting Conclusion

Formatting

Example

s

s

s

s

s

s

s

s

s

s

s

δ = dlog2(n)e

18/20

Context and Objectives Bits Formatting Conclusion

Conclusion

We try to answer the following question :

For a given sum-of-products, how to reduce the number of bits of
the operands while controlling the error ?

For this, some works have been realized:

FiPoGen : a tool generating fixed-point code for a given
sum-of-products

Bits formatting : a first step towards word-length optimization

19/20

Context and Objectives Bits Formatting Conclusion

THANK YOU
Any questions?

20/20

	Context and Objectives
	Bits Formatting
	Conclusion

