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Problem Statement

@ Finite capacity of communication channel.
@ Bit rate constraints.

@ Sensor network architectures are structured in a cergciEmall
distributed fashion.

@ Average data collected from the whole network is more
important than individual node data.
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Applications

@ Industrial, building, home system automation.

@ Monitoring (concentrations of chemicals in hydrology,
agriculture, pollution control, prediction of avalancreesd land

slides).
@ Healthcare sensor implantation in human bodies.

4/35



Introduction
00®00

Projection Approximation Subspace Tracking Algorithm

Mathematical model

Letx(t) € CN be the data vector observed at timevith r
narrow-band signal waves impinging on an arrajNafensors

X(t) = Alw())s(t)+v(t),

1 1 1
dwi aw2 dwr
A= . . . , S(t) =

eN-Djwy  gn-Dijwy  gln—Djwr
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Projection Approximation Subspace Tracking Algorithm

Image source: Euclidean Subspace, Wikipedia
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Projection Approximation Subspace Tracking Algorithm

Cost function

Bin Yang [1] proposed to minimize the following cost functio

F(W() = Xing 87 [|x() — W(t)y(i)

2

by the the approximation

y(i) = WH (i — 1)x(i).

[1] B. Yang, “Projection Approximation Subspace TrackintfEE
Trans. Sig. Proc., vol. 43, no. 1, pp. 95-107, 1995.
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What is Projection Approximation Subspace Tracking?

@ RequiregO(nr) operations per update.
@ n: Input vector dimension.
@ r: Desired number of eigencomponents.

@ t: Number of snapshots.
Constrained to < n < t.

8/35



PAST-Consensus Propagation Algorithm
®000

Consensus Propagation

Figure: Sensor network with neighborhood\/;7 for radius 9

9/35



PAST-Consensus Propagation Algorithm
®000

Consensus Propagation
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Figure: Sensor network with neighborhood\/;7 for radius 9
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Consensus Propagation

Figure: Sensor network with neighborhood\/;7 for radius 9
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Consensus Propagation Algorithm

forn:=1,2,... ,Ndo
Input {Xj (t — 1), w}jen; are the pairs sent to noaen stept —

Yo () = (Z Yi(t = Dw )/(Z WJ)
JEND JENMn
Broadcast the paify (t), wn} to all nodes in\y
Output:)_/n(t) is the estimation of the average in stegt noden

endfor

12/35



PAST-Consensus Propagation Algorithm
0®00

Consensus Propagation Algorithm

forn:=1,2... ,Ndo
Input {Xj (t —1),w}jen; are the pairs sent to noaein stept — 1

endfor
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Consensus Propagation Algorithm

forn:=1,2... ,Ndo
Input {Xj (t —1),w}jen; are the pairs sent to noaein stept — 1

y, (1) = (_z y,.<t—1>w,-) / (_z w,-)
JEN JENR

endfor
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Consensus Propagation Algorithm

forn:=1,2... ,Ndo
Input {Xj (t — 1), w}jen; are the pairs sent to noden stept —

y,(t) = (Zy(t— Dw )/(ZWJ)
JENMn jENn

Broadcast the paify (t), wn} to all nodes in\,

endfor
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Consensus Propagation Algorithm
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Consensus Propagation Algorithm
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Consensus Propagation Algorithm

forn:=1,2... ,Ndo
Input {Xj (t — 1), w}jen; are the pairs sent to noden stept —

y,(t) = (Zy(t— Dw )/(ZWJ)
JENMn jENn

Broadcast the paify_(t),wn} to all nodes inNy, wn = 1 /1/| Ny
Output:)_/n(t) is the estimation of the average in stegt noden
endfor
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PAST-Consensus Propagation Algorithm

Initialize: 3, P]_(O), ey PN(O),W]_(O), - ,WN(O)
fort:=1,2,...do
forn:=12,...,Ndo
Input: X,(t)
aggregatex, (t) = Syx(t — 1) from all nodes N,
¥, () = WH (t - 1)xa(t)
IocaIIy averagey (t)
hy(t) = Pn(t - 1)yn(t)
g,(t) = hn(t)/[8 + ¥ (D h, (V)]
Pn(t) = (Pn( 1) - g,(Hhy (1))
&(t) = Dn( (t) - Wn(t -1y, (1)
Wh(t) = Wa(t — 1) + e, (t)g (1)
broadcas{xn(t),y, (1), wn} to all nodes N\,
end
end
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PAST-Consensus Propagation Algorithm

Initialize: 3, P]_(O), ceey PN(O),W]_(O), R ,WN(O)
fort:=12,...do
forn:=12,...,Ndo

end
end
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PAST-Consensus Propagation Algorithm

Initialize: 3, P]_(O), ceey PN(O),W]_(O), R ,WN(O)
fort:=12,...do
forn:=12,...,Ndo
Input: X, (t)
end
end
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PAST-Consensus Propagation Algorithm

Initialize: 3, P]_(O), ceey PN(O),W]_(O), R ,WN(O)
fort:=12,...do
forn:=12,...,Ndo
Input: X, (t)
aggregate, (t) = Sx(t — 1) from all nodes N,
y, (1) = WH (t — 1), (1)
locally averagey (t)

end
end
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PAST-Consensus Propagation Algorithm

Initialize: 3, P]_(O), ceey PN(O),W]_(O), R ,WN(O)
fort:=12,...do
forn:=12,...,Ndo
Input: X, (t)
aggregate, (t) = Sx(t — 1) from all nodes N,
y,(t) = W”( 1)xq(1)
IocaIIy average/ (t)
hn(t) = Pn(t — 1)y (t)

gn( ) = hn(t ﬁ+yH (Ohy (V)]
Pn(t) = %(Pn(t— 1) - 9()h§(t))
€n(t) = Dn(x(t) — Wa(t — 1)y, (1))

Wi(t) = Wa(t — 1) + &,()g ()

end
end
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PAST-Consensus Propagation Algorithm

Initialize: 3, P]_(O), ceey PN(O),W]_(O), R ,WN(O)
fort:=12,...do
forn:=12,...,Ndo
Input: X, (t)
aggregate, (t) = Sx(t — 1) from all nodes N,

y,(H) = W”( 1)X,(t)

IocaIIy average/ (t)

ha(t) = Pn(t - 1)y (t)

g,(t) =h,(t)/[8 +yH (Hh,(1)]
Pn(t) = (Pn(t— 1) -9, ()h?(t))
e(t) = Dn(x(t) Wh(t— 1)y (1))

Wa(t) = Wa(t — 1) + &, (1
broadcas{xn(t),y (1), wn} to a
end
end

all nodes N,
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Simulation Parameters

Simulation Results

[ JoleJelele]

Parameter Variable Value
Number of nodes N 36
Number of incoming signals  r 1
Frequency= cos(DOA) wr(t) 0.1

Max. number of snapshots| tmax 1000
Forgetting factor I} 0.97
Transmission radius 9
Topology Planar array
SNR -20dB to 20dB
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Simulation Results
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Performance Evaluation of the RMSE for (r = 1), constant
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Simulation Parameters

Simulation Results
000000

Parameter Variable Value
Number of nodes N 36
Number of incoming signals  r 2
Frequencies= cos(DOA) wr(t)  0.5:-0.5,-0.5:0.5
Max. number of snapshots| tmax 1000
Forgetting factor I} 0.97
Transmission radius 9
Topology Planar array
SNR 3dB
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Simulation Results
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Consensus Propagation

cos(DOA)
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Centralized PAST result for whole sensor array N = 36,1 = 2)
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Simulation Results
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Consensus Propagation
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Simulation Results
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Consensus Propagation
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Distributed PAST-Consensus result for sensor No. 1% (= 2)
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Summary

o Locally average the vectgr (t) in nwith information fromA/,.
@ nbroadcasts its local observatigg(t), the locally filtered
r-dimensional vectoy (t), and a weightv,.

° 3_/n(t) contains information from the updated signal subspace at
t — 1 as well as new observation datgt).
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Preliminary Conclusions

@ Signal subspace tracking can be implemented without a
centralised fusion center.

@ Current RMSE performance shows benefits, but also plenty of
room for improvement.
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Next Steps

@ How to select suitable weights?
@ Only do consensus propagation prit)? Or also orWy(t)?
@ Alternative approach based on distributed RLS
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Root Mean Square Error for N = 1tol18
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Root Mean Square Error for N = 1%036
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RMSE Definition

1 1000
RMSE= | 501 D Jwr(t) —@a(t)? 1)

t=100

36\ 901

1 1 1000
Average RMSE= D fwa(t) — 1) 2
t=100

36/35



	Introduction
	

	PAST-Consensus Propagation Algorithm
	

	Simulation Results
	

	Summary and Conclusions
	

	Appendix
	Appendix

