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Problem Statement

Finite capacity of communication channel.

Bit rate constraints.

Sensor network architectures are structured in a centralized/small
distributed fashion.

Average data collected from the whole network is more
important than individual node data.
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Applications

Industrial, building, home system automation.

Monitoring (concentrations of chemicals in hydrology,
agriculture, pollution control, prediction of avalanchesand land
slides).

Healthcare sensor implantation in human bodies.
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Projection Approximation Subspace Tracking Algorithm

Mathematical model

Let x(t) ∈ C
N be the data vector observed at timet, with r

narrow-band signal waves impinging on an array ofN sensors

x(t) = A(ω(t))s(t)+v(t),

A =
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Projection Approximation Subspace Tracking Algorithm

Image source: Euclidean Subspace, Wikipedia
6 / 35



Introduction PAST-Consensus Propagation Algorithm Simulation Results Summary and Conclusions

Projection Approximation Subspace Tracking Algorithm

Cost function
Bin Yang [1] proposed to minimize the following cost function

J′(W(t)) =
∑t

i=1 βt−i
∥

∥x(i) − W(t)y(i)
∥

∥

2
,

by the the approximation

y(i) = WH(i − 1)x(i).

[1] B. Yang, “Projection Approximation Subspace Tracking”, IEEE
Trans. Sig. Proc., vol. 43, no. 1, pp. 95-107, 1995.
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What is Projection Approximation Subspace Tracking?

RequiresO(nr) operations per update.

n: Input vector dimension.

r: Desired number of eigencomponents.

t: Number of snapshots.
Constrained tor < n < t.
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Consensus Propagation
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Figure: Sensor network with neighborhoodN17 for radius 9
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Consensus Propagation

Figure: Sensor network with neighborhoodN17 for radius 9

10 / 35



Introduction PAST-Consensus Propagation Algorithm Simulation Results Summary and Conclusions

Consensus Propagation

Figure: Sensor network with neighborhoodN17 for radius 9
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Consensus Propagation Algorithm

for n := 1, 2, . . . , N do
Input{y

j
(t − 1), wj}j∈Nn are the pairs sent to noden in stept − 1

y
n
(t) =

(

∑

j∈Nn

y
j
(t − 1)wj

)

/

(

∑

j∈Nn

wj

)

Broadcast the pair{y
n
(t), wn} to all nodes inNn

Output:y
n
(t) is the estimation of the average in stept at noden

endfor
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PAST-Consensus Propagation Algorithm
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Simulation Parameters

Parameter Variable Value
Number of nodes N 36
Number of incoming signals r 1
Frequency= cos(DOA) ωr(t) 0.1
Max. number of snapshots tmax 1000
Forgetting factor β 0.97
Transmission radius 9
Topology Planar array
SNR -20dB to 20dB
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Performance Evaluation of the RMSE for (r = 1), constant
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Simulation Parameters

Parameter Variable Value
Number of nodes N 36
Number of incoming signals r 2
Frequencies= cos(DOA) ωr(t) 0.5:-0.5, -0.5:0.5
Max. number of snapshots tmax 1000
Forgetting factor β 0.97
Transmission radius 9
Topology Planar array
SNR 3dB
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Consensus Propagation
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Centralized PAST result for whole sensor array (N = 36, r = 2)
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Consensus Propagation
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Consensus Propagation

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

time

fr
eq

=
co

s(
D

O
A

)

 

 

freq true
avg freq estimated

Distributed PAST-Consensus result for sensor No. 17 (r = 2)
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Summary

Locally average the vectory
n
(t) in n with information fromNn.

n broadcasts its local observationxn(t), the locally filtered
r-dimensional vectory

n
(t), and a weightwn.

y
n
(t) contains information from the updated signal subspace at

t − 1 as well as new observation dataxn(t).
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Preliminary Conclusions

Signal subspace tracking can be implemented without a
centralised fusion center.

Current RMSE performance shows benefits, but also plenty of
room for improvement.
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Next Steps

How to select suitable weights?

Only do consensus propagation ony
n
(t)? Or also onWn(t)?

Alternative approach based on distributed RLS
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Root Mean Square Error for N = 1to18
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Root Mean Square Error for N = 19to36
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RMSE Definition

RMSE=

√

√

√

√

1
901

1000
∑

t=100

|ω1(t) − ω̂1(t)|2 (1)

Average RMSE=
1
36

√

√

√

√

1
901

1000
∑

t=100

|ω1(t) − ω̂1(t)|2 (2)
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