Distributed Projection Approximation Subspace Tracking Based on Consensus Propagation

Carolina Reyes, Thibault Hilaire, Christoph F. Mecklenbräuker creyes@nt.tuwien.ac.at, thibault.hilaire@lip6.fr, cfm@nt.tuwien.ac.at

Institute of Communications and Radio Frequency Engineering

Vienna University of Technology

CAMSAP December 16, 2009

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions

Outline

T-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
	F-Consensus Propagation Algorithm	F-Consensus Propagation Algorithm Simulation Results 0000000

Problem Statement

- Finite capacity of communication channel.
- Bit rate constraints.
- Sensor network architectures are structured in a centralized/small distributed fashion.
- Average data collected from the whole network is more important than individual node data.

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000			

Applications

- Industrial, building, home system automation.
- Monitoring (concentrations of chemicals in hydrology, agriculture, pollution control, prediction of avalanches and land slides).
- Healthcare sensor implantation in human bodies.

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

Projection Approximation Subspace Tracking Algorithm

Mathematical model

Let $\underline{x}(t) \in \mathbb{C}^N$ be the data vector observed at time *t*, with *r* narrow-band signal waves impinging on an array of *N* sensors

 $\underline{\mathbf{x}}(t) = \mathbf{A}(\underline{\boldsymbol{\omega}}(t))\underline{\mathbf{s}}(t) + \underline{\mathbf{v}}(t),$

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 & 1 \\ \mathrm{e}^{j\omega_1} & \mathrm{e}^{j\omega_2} & \mathrm{e}^{j\omega_r} \\ \vdots & \vdots & \vdots \\ \mathrm{e}^{(N-1)j\omega_1} & \mathrm{e}^{(n-1)j\omega_2} & \mathrm{e}^{(n-1)j\omega_r} \end{pmatrix}, \, \underline{\boldsymbol{s}}(t) = \begin{pmatrix} s_1(t) \\ \vdots \\ s_r(t) \end{pmatrix}$$

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

Projection Approximation Subspace Tracking Algorithm

Image source: Euclidean Subspace, Wikipedia

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

Projection Approximation Subspace Tracking Algorithm

Cost function

Bin Yang [1] proposed to minimize the following cost function

$$J'(\boldsymbol{W}(t)) = \sum_{i=1}^{t} \beta^{t-i} \left\| \underline{\boldsymbol{x}}(i) - \boldsymbol{W}(t)\underline{\boldsymbol{y}}(i) \right\|^{2},$$

by the the approximation

$$\underline{\mathbf{y}}(i) = \mathbf{W}^H(i-1)\underline{\mathbf{x}}(i).$$

[1] B. Yang, "Projection Approximation Subspace Tracking", IEEE Trans. Sig. Proc., vol. 43, no. 1, pp. 95-107, 1995.

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

What is Projection Approximation Subspace Tracking?

- Requires O(nr) operations per update.
- *n*: Input vector dimension.
- *r*: Desired number of eigencomponents.
- *t*: Number of snapshots. Constrained to *r* < *n* < *t*.

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	•000	000000	000

Figure: Sensor network with neighborhood N_{17} for radius 9

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	•000	000000	000

Figure: Sensor network with neighborhood N_{17} for radius 9

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	•000	000000	000

Figure: Sensor network with neighborhood N_{17} for radius 9

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

for
$$n := 1, 2, ..., N$$
 do
Input $\{\underline{y}_j(t-1), w_j\}_{j \in \mathcal{N}_n}$ are the pairs sent to node n in step $t-1$
 $\underline{y}_n(t) = \left(\sum_{j \in \mathcal{N}_n} \underline{y}_j(t-1)w_j\right) / \left(\sum_{j \in \mathcal{N}_n} w_j\right)$
Broadcast the pair $\{\underline{y}_n(t), w_n\}$ to all nodes in \mathcal{N}_n
Output: $\underline{y}_n(t)$ is the estimation of the average in step t at node n
endfor

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

for
$$n := 1, 2, ..., N$$
 do
Input $\{\underline{y}_j(t-1), w_j\}_{j \in \mathcal{N}_n}$ are the pairs sent to node n in step $t-1$
 $\underline{y}_n(t) = \left(\sum_{j \in \mathcal{N}_n} \underline{y}_j(t-1)w_j\right) / \left(\sum_{j \in \mathcal{N}_n} w_j\right)$
endfor

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

for
$$n := 1, 2, ..., N$$
 do
Input $\{\underline{y}_j(t-1), w_j\}_{j \in \mathcal{N}_n}$ are the pairs sent to node n in step $t-1$
 $\underline{y}_n(t) = \left(\sum_{j \in \mathcal{N}_n} \underline{y}_j(t-1)w_j\right) / \left(\sum_{j \in \mathcal{N}_n} w_j\right)$
Broadcast the pair $\{\underline{y}_n(t), w_n\}$ to all nodes in \mathcal{N}_n ,
endfor

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

for
$$n := 1, 2, ..., N$$
 do
Input $\{\underline{\mathbf{y}}_j(t-1), w_j\}_{j \in \mathcal{N}_n}$ are the pairs sent to node n in step $t-1$
 $\underline{\mathbf{y}}_n(t) = \left(\sum_{j \in \mathcal{N}_n} \underline{\mathbf{y}}_j(t-1)w_j\right) / \left(\sum_{j \in \mathcal{N}_n} w_j\right)$
Broadcast the pair $\{\underline{\mathbf{y}}_n(t), w_n\}$ to all nodes in $\mathcal{N}_n, w_n = 1 / \sqrt{|\mathcal{N}_n|}$
endfor

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

for
$$n := 1, 2, ..., N$$
 do
Input $\{\underline{\mathbf{y}}_{j}(t-1), w_{j}\}_{j \in \mathcal{N}_{n}}$ are the pairs sent to node n in step $t-1$
 $\underline{\mathbf{y}}_{n}(t) = \left(\sum_{j \in \mathcal{N}_{n}} \underline{\mathbf{y}}_{j}(t-1)w_{j}\right) / \left(\sum_{j \in \mathcal{N}_{n}} w_{j}\right)$
Broadcast the pair $\{\underline{\mathbf{y}}_{n}(t), w_{n}\}$ to all nodes in $\mathcal{N}_{n}, w_{n} = 1 / \sqrt{|\mathcal{N}_{n}|}$
endfor

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

for
$$n := 1, 2, ..., N$$
 do
Input $\{\underline{y}_j(t-1), w_j\}_{j \in \mathcal{N}_n}$ are the pairs sent to node n in step $t-1$
 $\underline{y}_n(t) = \left(\sum_{j \in \mathcal{N}_n} \underline{y}_j(t-1)w_j\right) / \left(\sum_{j \in \mathcal{N}_n} w_j\right)$
Broadcast the pair $\{\underline{y}_n(t), w_n\}$ to all nodes in $\mathcal{N}_n, w_n = 1 / \sqrt{|\mathcal{N}_n|}$
Output: $\underline{y}_n(t)$ is the estimation of the average in step t at node n
endfor

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

for
$$n := 1, 2, ..., N$$
 do
Input $\{\underline{\mathbf{y}}_{j}(t-1), w_{j}\}_{j \in \mathcal{N}_{n}}$ are the pairs sent to node n in step $t-1$
 $\underline{\mathbf{y}}_{n}(t) = \left(\sum_{j \in \mathcal{N}_{n}} \underline{\mathbf{y}}_{j}(t-1)w_{j}\right) / \left(\sum_{j \in \mathcal{N}_{n}} w_{j}\right)$
Broadcast the pair $\{\underline{\mathbf{y}}_{n}(t), w_{n}\}$ to all nodes in $\mathcal{N}_{n}, w_{n} = 1 / \sqrt{|\mathcal{N}_{n}|}$
Output: $\underline{\mathbf{y}}_{n}(t)$ is the estimation of the average in step t at node n
endfor

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

Initialize: $\beta, P_1(0), \dots, P_N(0), W_1(0), \dots, W_N(0)$ for t := 1, 2, ... do for n := 1, 2, ..., N do Input: $x_n(t)$ aggregate $\underline{x}_n(t) = S_n x(t-1)$ from all nodes $\in \mathcal{N}_n$ $\mathbf{y}_{n}(t) = \mathbf{W}_{n}^{H}(t-1)\mathbf{\underline{x}}_{n}(t)$ locally average $y_{i}(t)$ $\underline{\boldsymbol{h}}_n(t) = \boldsymbol{P}_n(t-1)\boldsymbol{y}_n(t)$ $\boldsymbol{g}_{n}(t) = \underline{\boldsymbol{h}}_{n}(t) / [\beta + \underline{\boldsymbol{y}}_{n}^{H}(t)\underline{\boldsymbol{h}}_{n}(t)]$ $\boldsymbol{P}_n(t) = \frac{1}{\beta} (\boldsymbol{P}_n(t-1) - \boldsymbol{g}_n(t) \underline{\boldsymbol{h}}_n^H(t))$ $\underline{\boldsymbol{e}}_n(t) = \boldsymbol{D}_n(\underline{\boldsymbol{x}}(t) - \boldsymbol{W}_n(t-1)\boldsymbol{y}_n(t))$ $\boldsymbol{W}_n(t) = \boldsymbol{W}_n(t-1) + \underline{\boldsymbol{e}}_n(t)\boldsymbol{g}_n^H(t)$ broadcast $\{x_n(t), \mathbf{y}_n(t), w_n\}$ to all nodes $\in \mathcal{N}_n$ end end

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
	0000		

Initialize: β , $P_1(0), \ldots, P_N(0), W_1(0), \ldots, W_N(0)$ for t := 1, 2, ... do for n := 1, 2, ..., N do Input: $x_n(t)$ end end

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

Initialize: β , $P_1(0), \ldots, P_N(0), W_1(0), \ldots, W_N(0)$ for t := 1, 2, ... do for n := 1, 2, ..., N do Input: $x_n(t)$ aggregate $\mathbf{x}_n(t) = \mathbf{S}_n \mathbf{x}(t-1)$ from all nodes $\in \mathcal{N}_n$ $\mathbf{y}_{n}(t) = \mathbf{W}_{n}^{H}(t-1)\mathbf{\underline{x}}_{n}(t)$ locally average $y_{n}(t)$ end end

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

Initialize: $\beta, P_1(0), \dots, P_N(0), W_1(0), \dots, W_N(0)$ for t := 1, 2, ... do for n := 1, 2, ..., N do Input: $x_n(t)$ aggregate $\mathbf{x}_n(t) = S_n \mathbf{x}(t-1)$ from all nodes $\in \mathcal{N}_n$ $\mathbf{y}_{n}(t) = \mathbf{W}_{n}^{H}(t-1)\mathbf{\underline{x}}_{n}(t)$ locally average $y_{i}(t)$ $\underline{h}_n(t) = P_n(t-1)y_n(t)$ $\boldsymbol{g}_n(t) = \underline{\boldsymbol{h}}_n(t) / [\beta + \boldsymbol{y}_n^H(t) \underline{\boldsymbol{h}}_n(t)]$ $\boldsymbol{P}_n(t) = \frac{1}{\beta} (\boldsymbol{P}_n(t-1) - \boldsymbol{g}_n(t) \boldsymbol{h}_n^H(t))$ $\boldsymbol{e}_n(t) = \boldsymbol{D}_n(\boldsymbol{x}(t) - \boldsymbol{W}_n(t-1)\boldsymbol{y}_n(t))$ $W_n(t) = W_n(t-1) + \underline{e}_n(t)g_n^H(t)$ end end

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

Initialize:
$$\beta$$
, $P_1(0)$, ..., $P_N(0)$, $W_1(0)$, ..., $W_N(0)$
for $t := 1, 2, ..., N$ do
Input: $x_n(t)$
aggregate $\underline{x}_n(t) = S_n \underline{x}(t-1)$ from all nodes $\in \mathcal{N}_n$
 $\underline{y}_n(t) = W_n^H(t-1) \underline{x}_n(t)$
locally average $\underline{y}_n(t)$
 $\underline{h}_n(t) = P_n(t-1) \underline{y}_n(t)$
 $\underline{g}_n(t) = \underline{h}_n(t) / [\beta + \underline{y}_n^H(t) \underline{h}_n(t)]$
 $P_n(t) = \frac{1}{\beta} (P_n(t-1) - \underline{g}_n(t) \underline{h}_n^H(t))$
 $\underline{e}_n(t) = D_n(\underline{x}(t) - W_n(t-1) \underline{y}_n(t))$
 $W_n(t) = W_n(t-1) + \underline{e}_n(t) \underline{g}_n^H(t)$
broadcast $\{x_n(t), \underline{y}_n(t), w_n\}$ to all nodes $\in \mathcal{N}_n$
end
end

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	000000	000

Initialize: $\beta, P_1(0), \dots, P_N(0), W_1(0), \dots, W_N(0)$ for t := 1, 2, ... do for n := 1, 2, ..., N do Input: $x_n(t)$ aggregate $\mathbf{x}_n(t) = S_n \mathbf{x}(t-1)$ from all nodes $\in \mathcal{N}_n$ $\mathbf{y}_{n}(t) = \mathbf{W}_{n}^{H}(t-1)\mathbf{\underline{x}}_{n}(t)$ locally average $y_{i}(t)$ $\underline{\boldsymbol{h}}_n(t) = \boldsymbol{P}_n(t-1)\boldsymbol{y}_n(t)$ $\boldsymbol{g}_{n}(t) = \underline{\boldsymbol{h}}_{n}(t) / [\beta + \overline{\boldsymbol{y}}_{n}^{H}(t)\underline{\boldsymbol{h}}_{n}(t)]$ $\boldsymbol{P}_n(t) = \frac{1}{\beta} (\boldsymbol{P}_n(t-1) - \boldsymbol{g}_n(t) \underline{\boldsymbol{h}}_n^H(t))$ $\underline{\boldsymbol{e}}_n(t) = \boldsymbol{D}_n(\underline{\boldsymbol{x}}(t) - \boldsymbol{W}_n(t-1)\boldsymbol{y}_n(t))$ $\boldsymbol{W}_n(t) = \boldsymbol{W}_n(t-1) + \underline{\boldsymbol{e}}_n(t)\boldsymbol{g}_n^H(t)$ broadcast $\{x_n(t), \mathbf{y}_n(t), w_n\}$ to all nodes $\in \mathcal{N}_n$ end end

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
		00000	

Simulation Parameters

Parameter	Variable	Value
Number of nodes	N	36
Number of incoming signals	r	1
Frequency = cos(DOA)	$\omega_r(t)$	0.1
Max. number of snapshots	tmax	1000
Forgetting factor	β	0.97
Transmission radius		9
Topology		Planar array
SNR		-20dB to 20dB

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000	00000	000

Performance Evaluation of the RMSE for (r = 1), constant

	Sums Summary and Conclusions
00000 0000 00000	

Simulation Parameters

Parameter	Variable	Value
Number of nodes	Ν	36
Number of incoming signals	r	2
Frequencies= cos(DOA)	$\omega_r(t)$	0.5:-0.5, -0.5:0.5
Max. number of snapshots	tmax	1000
Forgetting factor	eta	0.97
Transmission radius		9
Topology		Planar array
SNR		3dB

Introduction PAS'	T-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000 000	00	000000	

Centralized PAST result for whole sensor array (N = 36, r = 2)

Introduction PAST-	Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000 0000		000000	

PAST result neighborhood N_{17} (N = 6, r = 2)

Introduction 00000	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions

Distributed PAST-Consensus result for sensor No. 17 (r = 2)

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
00000	0000		●00
Summary			

- Locally average the vector $\mathbf{y}_n(t)$ in *n* with information from \mathcal{N}_n .
- *n* broadcasts its local observation $x_n(t)$, the locally filtered *r*-dimensional vector $\mathbf{y}_n(t)$, and a weight w_n .
- $\underline{y}_n(t)$ contains information from the updated signal subspace at t-1 as well as new observation data $\underline{x}_n(t)$.

Introduction	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
			000

Preliminary Conclusions

- Signal subspace tracking can be implemented without a centralised fusion center.
- Current RMSE performance shows benefits, but also plenty of room for improvement.

Introduction 00000	PAST-Consensus Propagation Algorithm	Simulation Results	Summary and Conclusions
Next Steps			

- How to select suitable weights?
- Only do consensus propagation on $\underline{y}_n(t)$? Or also on $W_n(t)$?
- Alternative approach based on distributed RLS

Root Mean Square Error for N = 1to18

Root Mean Square Error for N = 19to36

$$RMSE = \sqrt{\frac{1}{901} \sum_{t=100}^{1000} |\omega_1(t) - \hat{\omega}_1(t)|^2}$$
(1)
Average RMSE = $\frac{1}{36} \sqrt{\frac{1}{901} \sum_{t=100}^{1000} |\omega_1(t) - \hat{\omega}_1(t)|^2}$ (2)