Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion

Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision

Anastasia Volkova, Thibault Hilaire, Christoph Lauter

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

22nd IEEE Symposium on Computer Arithmetic June 23, 2015

CNIS

Problem statement ●○○	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples 0	Conclusion
Digital filte	ers			

$$\begin{array}{c|c} \mathbf{u}(k) \\ \hline \\ H \\ \hline \\ \end{array} \begin{array}{c} \mathbf{y}(k) \\ \hline \\ \end{array}$$

Problem statement ●○○	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Digital filte	rs			

$$\begin{array}{c|c} \mathbf{u}(k) \\ \hline \\ H \end{array} \xrightarrow{\mathbf{y}(k)} \end{array}$$

Linear Time-Invariant filter in state-space representation:

$$H\begin{cases} \mathbf{x}(k+1) &= \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k)\\ \mathbf{y}(k) &= \mathbf{C}\mathbf{x}(k) + \mathbf{D}\mathbf{u}(k) \end{cases}$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{B} \in \mathbb{R}^{n \times q}, \mathbf{C} \in \mathbb{R}^{p \times n}, \mathbf{D} \in \mathbb{R}^{p \times q}$

Problem statement ●○○	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples 0	Conclusion
Digital filte	rs			

$$\begin{array}{c|c} \mathbf{u}(k) \\ \hline \\ H \end{array} \xrightarrow{\mathbf{y}(k)} \end{array}$$

Linear Time-Invariant filter in state-space representation:

$$H\begin{cases} \mathbf{x}(k+1) &= \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k)\\ \mathbf{y}(k) &= \mathbf{C}\mathbf{x}(k) + \mathbf{D}\mathbf{u}(k) \end{cases}$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{B} \in \mathbb{R}^{n \times q}, \mathbf{C} \in \mathbb{R}^{p \times n}, \mathbf{D} \in \mathbb{R}^{p \times q}$

Bounded-Input Bounded-Output (BIBO) stability:

$$ho({f A}) < 1$$

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
○●○		00000	O	00
		• . •		

Worst-Case Peak Gain: Definitions

Definition

Worst-case peak gain (WCPG) **W** is the largest possible peak value of the output $\mathbf{y}(k)$ over all possible inputs $\mathbf{u}(k)$:

$$\mathbf{W} := |\mathbf{D}| + \sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right|$$

Problem statement ○○●	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion

Worst-Case Peak Gain: Motivation

WCPG is required:

- To measure how the computational errors in the implemented filter are propagated to the output
- To measure the magnitude of each variable for implementations in fixed-point arithmetic

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
○○●		00000	O	00

Worst-Case Peak Gain: Motivation

WCPG is required:

- To measure how the computational errors in the implemented filter are propagated to the output
- To measure the magnitude of each variable for implementations in fixed-point arithmetic

Goal:

Given a small $\varepsilon>0$ compute a floating-point approximation ${\bf S}$ on the WCPG such that element-by-element

$$|\mathbf{W} - \mathbf{S}| < \varepsilon$$

Problem statement 000	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion 00

- 1 Problem statement
- 2 Algorithm of WCPG evaluation
- 3 Basic bricks
- 4 Numerical Examples

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
	●○○○○○○○	00000	O	00

Worst-Case Peak Gain

$$\mathbf{W} = |\mathbf{D}| + \sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right|$$

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
	●●●●●●●●	00000	O	00

Worst-Case Peak Gain

$$\mathbf{W} = |\mathbf{D}| + \sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right|$$

 \bullet Cannot sum infinitely \Longrightarrow need to truncate the sum

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
	●○○○○○○○	00000	O	00

Worst-Case Peak Gain

$$\mathbf{W} = |\mathbf{D}| + \sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right|$$

- $\bullet\,$ Cannot sum infinitely \Longrightarrow need to truncate the sum
- 6 sources of errors \implies allocate 6 "buckets" ε_i out of the error budget ε

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
	●●●●●●●●	00000	O	00
Step 1				

$\sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right|$

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion 00
Step 1				

$$\sum_{k=0}^{\infty} |\mathbf{C}\mathbf{A}^{k}\mathbf{B}| \quad \longrightarrow \quad \sum_{k=0}^{N} |\mathbf{C}\mathbf{A}^{k}\mathbf{B}|$$

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion 00
Step 1				

$$\left|\sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right| - \sum_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right| \right| \leq \varepsilon_1$$

Step 1 Compute an approximate lower bound on truncation order N such that the truncation error is smaller than ε_1 .

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion 00
Stop 1				

$$\left|\sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right| - \sum_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right| \right| \leq \varepsilon_1$$

Step 1 Compute an approximate lower bound on truncation order N such that the truncation error is smaller than ε_1 .

Lower bound on truncation order N

$$N \geq \left\lceil rac{\log rac{arepsilon_1}{\|\mathbf{M}\|_{min}}}{\log
ho(\mathbf{A})}
ight
ceil \qquad ext{with} \quad \mathbf{M} := \sum_{l=1}^n rac{|\mathbf{R}_l|}{1 - |oldsymbol{\lambda}_l|} rac{|oldsymbol{\lambda}_l|}{
ho(\mathbf{A})}$$

 $\sum_{k=0}^{\infty} |\mathbf{C}\mathbf{A}^{k}\mathbf{B}|$ \downarrow $\sum_{k=0}^{N} |\mathbf{C}\mathbf{A}^{k}\mathbf{B}|$

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 2				

$$\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right|$$

 $\sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right|$ \downarrow $\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right|$ \downarrow

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples 0	Conclusion 00
Step 2				

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples 0	Conclusion 00
Step 2				

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion 00
Step 2				

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
	○○●○○○○○○	00000	0	00
Step 2				

8/24

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 2				

8/24

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 2				

$$\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right|$$

 $\sum_{k=0}^{\infty} |\mathbf{C}\mathbf{A}^{k}\mathbf{B}| \\ \downarrow \\ \sum_{k=0}^{N} |\mathbf{C}\mathbf{A}^{k}\mathbf{B}| \\ \downarrow$

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 2				

$$\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right| \quad \longrightarrow \quad \sum_{k=0}^{N} \left| \mathbf{C} \mathbf{V} \mathbf{T}^{k} \mathbf{V}^{-1} \mathbf{B} \right|$$

$$\sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right|$$

$$\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right|$$

$$\downarrow$$

$$\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{V} \mathbf{T}^{k} \mathbf{V}^{-1} \mathbf{B} \right|$$

Problem statement 000	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 2				

$$\left|\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right| - \sum_{k=0}^{N} \left| \mathbf{C} \mathbf{V} \mathbf{T}^{k} \mathbf{V}^{-1} \mathbf{B} \right| \right| \leq \varepsilon_{2}$$

Step 2 Given matrix **V** compute **T** such that the error of substitution of the product $\mathbf{VT}^k\mathbf{V}^{-1}$ instead of \mathbf{A}^k is less than ε_2 .

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 3				

$$\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{V} \mathbf{T}^{k} \mathbf{V}^{-1} \mathbf{B} \right|$$

 $\sum_{k=0}^{\infty} \begin{vmatrix} \mathbf{C} \mathbf{A}^{k} \mathbf{B} \\ \downarrow \\ \sum_{k=0}^{N} \begin{vmatrix} \mathbf{C} \mathbf{A}^{k} \mathbf{B} \end{vmatrix} \\ \downarrow \\ \sum_{k=0}^{N} \begin{vmatrix} \mathbf{C} \mathbf{V} \mathbf{T}^{k} \mathbf{V}^{-1} \mathbf{B} \end{vmatrix} \\ \downarrow$

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion

Step 3

$$\sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right|$$

$$\downarrow$$

$$\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right|$$

$$\downarrow$$

$$\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{V} \mathbf{T}^{k} \mathbf{V}^{-1} \mathbf{B} \right|$$

$$\downarrow$$

$$\sum_{k=0}^{N} \left| \mathbf{C}' \mathbf{T}^{k} \mathbf{B}' \right|$$

Problem statement 000	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion 00
Step 3				

$$\left|\sum_{k=0}^{N} \left| \mathbf{CVT}^{k} \mathbf{V}^{-1} \mathbf{B} \right| - \sum_{k=0}^{N} \left| \mathbf{C'T}^{k} \mathbf{B'} \right| \right| \leq \varepsilon_{3}$$

Step 3 Compute the products **CV** and **V**⁻¹**B** such that the propagated error of matrix multiplications is bounded by ε_{3} .

 $\begin{array}{c} \sum\limits_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right| \\ \downarrow \\ \sum\limits_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right| \\ \downarrow \\ \sum\limits_{k=0}^{N} \left| \mathbf{C} \mathbf{V} \mathbf{T}^{k} \mathbf{V}^{-1} \mathbf{B} \right| \\ \downarrow \\ \sum\limits_{k=0}^{N} \left| \mathbf{C}' \mathbf{T}^{k} \mathbf{B}' \right| \end{array}$

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 4				

$$\sum_{k=0}^{N} \left| \mathbf{C}' \mathbf{T}^{k} \mathbf{B}' \right|$$

$$\sum_{k=0}^{\infty} |\mathbf{CA}^{k}\mathbf{B}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{CA}^{k}\mathbf{B}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{CVT}^{k}\mathbf{V}^{-1}\mathbf{B}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{C'T}^{k}\mathbf{B'}|$$

$$\downarrow$$

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 4				

$$\sum_{k=0}^{N} |\mathbf{C}'\mathbf{T}^{k}\mathbf{B}'| \longrightarrow \sum_{k=0}^{N} |\mathbf{C}'\mathbf{P}_{k}\mathbf{B}'|$$
$$\mathbf{P}_{0} := \mathbf{I}$$
$$\mathbf{P}_{k} := \mathbf{T} \otimes \mathbf{P}_{k-1}$$

$$\begin{array}{c} \sum\limits_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right| \\ \downarrow \\ \sum\limits_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right| \\ \downarrow \\ \sum\limits_{k=0}^{N} \left| \mathbf{C} \mathbf{V} \mathbf{T}^{k} \mathbf{V}^{-1} \mathbf{B} \right| \\ \downarrow \\ \sum\limits_{k=0}^{N} \left| \mathbf{C}' \mathbf{T}^{k} \mathbf{B}' \right| \\ \downarrow \\ \sum\limits_{k=0}^{N} \left| \mathbf{C}' \mathbf{P}_{k} \mathbf{B}' \right| \end{array}$$

Problem statement 000	Algorithm of WCPG evaluation ○○○○○●○○○	Basic bricks 00000	Numerical Examples O	Conclusion
Step 4				

$$\left|\sum_{k=0}^{N} \left| \mathbf{C}' \mathbf{T}^{k} \mathbf{B}' \right| \quad - \quad \sum_{k=0}^{N} \left| \mathbf{C}' \mathbf{P}_{k} \mathbf{B}' \right| \right| \leq \varepsilon_{4}$$
$$\mathbf{P}_{0} := \mathbf{I}$$
$$\mathbf{P}_{k} := \mathbf{T} \otimes \mathbf{P}_{k-1}$$

Step 4 Compute the powers \mathbf{P}_k of matrix \mathbf{T} such that the propagated error of matrix multiplications is bounded by ε_4 .

 $\sum_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right|$

 $\sum_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right|$

 $\sum_{k=0}^{N} \left| \mathbf{C'T}^{k} \mathbf{B'} \right|$

 $\sum_{k=0}^{N} |\mathbf{C'}\mathbf{P}_{k}\mathbf{B'}|$

 $\sum_{k=0}^{N} |\mathbf{CVT}^k\mathbf{V}|$

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 5				

$$\sum_{k=0}^{N} |\mathbf{C'}\mathbf{P}_k\mathbf{B'}|$$

$$\begin{array}{c} \sum\limits_{k=0}^{\infty} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right| \\ \downarrow \\ \sum\limits_{k=0}^{N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right| \\ \downarrow \\ \sum\limits_{k=0}^{N} \left| \mathbf{C} \mathbf{V} \mathbf{T}^{k} \mathbf{V}^{-1} \mathbf{B} \right| \\ \downarrow \\ \sum\limits_{k=0}^{N} \left| \mathbf{C}' \mathbf{T}^{k} \mathbf{B}' \right| \\ \downarrow \end{array}$$

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 5				

$$\sum_{k=0}^{N} |\mathbf{C'P}_{k}\mathbf{B'}| \longrightarrow \sum_{k=0}^{N} |\mathbf{L}_{k}|$$

$$L_k := C' \otimes (P_k \otimes B')$$

$$\sum_{k=0}^{\infty} |\mathbf{CA}^{k}\mathbf{B}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{CA}^{k}\mathbf{B}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{CVT}^{k}\mathbf{V}^{-1}\mathbf{B}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{C'T}^{k}\mathbf{B'}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{C'P}_{k}\mathbf{B'}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{L}_{k}|$$

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples O	Conclusion
Step 5				

$$\left|\sum_{k=0}^{N} |\mathbf{C}' \mathbf{P}_{k} \mathbf{B}'| - \sum_{k=0}^{N} |\mathbf{L}_{k}|\right| \leq \varepsilon_{5}$$
$$\mathbf{L}_{k} := \mathbf{C}' \otimes (\mathbf{P}_{k} \otimes \mathbf{B}')$$

Step 5 Compute on each step the matrix product $\mathbf{C}'\mathbf{T}^{k}\mathbf{B}'$ such the overall error of these multiplications on each step is bounded by ε_{5} .

$$\sum_{k=0}^{\infty} |\mathbf{C}\mathbf{A}^{k}\mathbf{B}| \qquad \downarrow \\ \sum_{k=0}^{N} |\mathbf{C}\mathbf{A}^{k}\mathbf{B}| \qquad \downarrow \\ \sum_{k=0}^{N} |\mathbf{C}\mathbf{V}\mathbf{T}^{k}\mathbf{V}^{-1}\mathbf{B}| \qquad \downarrow \\ \sum_{k=0}^{N} |\mathbf{C}'\mathbf{T}^{k}\mathbf{B}'| \qquad \downarrow \\ \sum_{k=0}^{N} |\mathbf{C}'\mathbf{P}_{k}\mathbf{B}'| \qquad \downarrow \\ \sum_{k=0}^{N} |\mathbf{L}_{k}|$$

Problem statement	Algorithm of WCPG evaluation ○○○○○○●○	Basic bricks 00000	Numerical Examples O	Conclusion
Step 6				

$$\sum_{k=0}^{N} |\mathbf{L}_{k}|$$

$$\sum_{k=0}^{\infty} |\mathbf{CA}^{k}\mathbf{B}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{CA}^{k}\mathbf{B}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{CVT}^{k}\mathbf{V}^{-1}\mathbf{B}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{C'T}^{k}\mathbf{B'}|$$

$$\downarrow$$

$$\sum_{k=0}^{N} |\mathbf{C'P}_{k}\mathbf{B'}|$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
000	○○○○○○●○	00000	O	
Step 6				

$$\sum_{k=0}^{N} |\mathbf{L}_{k}| \longrightarrow \mathbf{S}_{N}$$

$$\mathbf{S}_k := \mathbf{S}_{k-1} \oplus |\mathbf{L}_k|$$

$$\sum_{k=0}^{\infty} |\mathbf{CA}^{k}\mathbf{B}| \rightarrow \sum_{k=0}^{N} |\mathbf{CA}^{k}\mathbf{B}| \rightarrow \sum_{k=0}^{N} |\mathbf{CVT}^{k}\mathbf{V}^{-1}\mathbf{B}| \rightarrow \sum_{k=0}^{N} |\mathbf{CVT}^{k}\mathbf{V}^{-1}\mathbf{B}| \rightarrow \sum_{k=0}^{N} |\mathbf{C'T}^{k}\mathbf{B'}| \rightarrow \sum_{k=0}^{N} |\mathbf{C'P}_{k}\mathbf{B'}| \rightarrow \sum_{k=0}^{N} |\mathbf{L}_{k}| \rightarrow \sum_{k=0}^{N} |\mathbf{L}_{k}| \rightarrow S_{N}$$

Problem statement 000	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples 0	Conclusion
Step 6				

$$\left| \sum_{k=0}^{N} |\mathbf{L}_{k}| - \mathbf{S}_{N} \right| \leq \varepsilon_{6}$$
$$\mathbf{S}_{k} := \mathbf{S}_{k-1} \oplus |\mathbf{L}_{k}|$$

Step 6 Compute the absolute value of matrix and accumulate it in the result such that the error is bounded by ε_6 .

$$\sum_{k=0}^{\infty} |\mathbf{CA}^{k}\mathbf{B}| \rightarrow \sum_{k=0}^{N} |\mathbf{CA}^{k}\mathbf{B}| \rightarrow \sum_{k=0}^{N} |\mathbf{CVT}^{k}\mathbf{V}^{-1}\mathbf{B}| \rightarrow \sum_{k=0}^{N} |\mathbf{C'T}^{k}\mathbf{B'}| \rightarrow \sum_{k=0}^{N} |\mathbf{C'T}^{k}\mathbf{B'}| \rightarrow \sum_{k=0}^{N} |\mathbf{C'T}^{k}\mathbf{B'}| \rightarrow \sum_{k=0}^{N} |\mathbf{L}_{k}| \rightarrow \sum_{k=0}^{N} |\mathbf{L}_{k}| \rightarrow S_{N}$$
Algorithm of WCPG evaluation Problem statement Basic bricks Numerical Examples Conclusion 000000 Taking $\varepsilon_i = \frac{1}{6}\varepsilon$ we obtain that $\varepsilon_1 + \varepsilon_2 + \ldots + \varepsilon_6 \leq \varepsilon$ hence the overall error bound is satisfied. A floating-point evaluation of the WCPG: Step 1: Compute N Step 2: Compute V $\mathbf{T} \leftarrow inv(\mathbf{V}) \otimes (\mathbf{A} \otimes \mathbf{V})$ Step 3: $\mathbf{B}' \leftarrow inv(\mathbf{V}) \otimes \mathbf{B}$ $\mathbf{C}' \leftarrow \mathbf{C} \otimes \mathbf{V}$ $\mathbf{S}_{-1} \leftarrow |\mathbf{D}|, \mathbf{P}_{-1} \leftarrow \mathbf{I}_n$ for k from 0 to N do: Step 4: $\mathbf{P}_k \leftarrow \mathbf{T} \otimes \mathbf{P}_{k-1}$ Step 5: $L_k \leftarrow C' \otimes (P_k \otimes B')$ Step 6: $\mathbf{S}_k \leftarrow \mathbf{S}_{k-1} \oplus \operatorname{abs}(\mathbf{L}_k)$ end for

Problem statement 000	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples 0	Conclusion 00	
Outline					

- Problem statement
- 2 Algorithm of WCPG evaluation
- 3 Basic bricks
- 4 Numerical Examples

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion	
000		●○○○○	O	00	
Basic bricks	5				

Requirement:

Provide matrix operations which satisfy an element-by-element absolute error bound δ given in the argument.

Problem statement Algorithm of WCPG evaluation		Basic bricks	Numerical Examples	Conclusion	
		●○○○○	O	00	
Rasic brick	2				

Requirement:

Provide matrix operations which satisfy an element-by-element absolute error bound δ given in the argument.

Problem:

In fixed-precision FP arithmetic such absolute bound is not generally possible.

Problem statement	Algorithm of WCPG evaluation	Basic bricks ●○○○○	Numerical Examples O	Conclusion 00	
Rasic brick	2				

Requirement:

Provide matrix operations which satisfy an element-by-element absolute error bound δ given in the argument.

Problem:

In fixed-precision FP arithmetic such absolute bound is not generally possible.

Solution:

Use multiple-precision FP arithmetic and dynamically adapt precision of the result variables.

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
000		○●○○○	O	00
Basic bricks	5			

• multiplyAndAdd(A, B, C, δ): for $\mathbf{A} \in \mathbb{C}^{p \times n}$, $\mathbf{B} \in \mathbb{C}^{n \times q}$, $\mathbf{C} \in \mathbb{C}^{p \times q}$, computes a matrix $\mathbf{D} \in \mathbb{C}^{p \times q}$ such that

$\mathbf{D}=\mathbf{A}\cdot\mathbf{B}+\mathbf{C}+\mathbf{\Delta},$

where the error-matrix Δ is bounded by $|\Delta| < \delta$, for a certain scalar absolute error bound δ , given in argument to the algorithm.

The algorithm performs an error-free scalar multiplication and uses a modified software-implemented Kulisch-like accumulator.

Problem statement	Algorithm of WCPG evaluation	Basic bricks ○○●○○	Numerical Examples O	Conclusion
Basic bricks				

• sumAbs(A, B, δ): for $\mathbf{A} \in \mathbb{R}^{p \times n}$, $\mathbf{B} \in \mathbb{C}^{p \times n}$, computes a matrix $\mathbf{C} \in \mathbb{R}^{p \times n}$ such that

$$\mathbf{C} = \mathbf{A} + |\mathbf{B}| + \mathbf{\Delta},$$

where the error matrix Δ is bounded by $|\Delta| < \delta$, for a certain scalar absolute error bound δ , given in argument to the algorithm.

Problem statement	roblem statement Algorithm of WCPG evaluation		Numerical Examples O	Conclusion
D 1 1 1 1				
Basic bricks				

• $inv(V, \delta)$: for a complex square matrix $\mathbf{V} \in \mathbb{C}^{n \times n}$, computes a matrix $\mathbf{U} \in \mathbb{C}^{n \times n}$ such that

$$\mathbf{U} = \mathbf{V}^{-1} + \mathbf{\Delta},$$

where the error matrix Δ is bounded by $|\Delta| < \delta$, for a certain scalar absolute error bound δ , given in argument to the algorithm.

The algorithm is based on Newton-Raphson matrix iteration, requires a seed matrix in argument and works on certain conditions, easily verified in our case.

Problem statement	Algorithm of WCPG evaluation	Basic bricks ○○○○●	Numerical Examples O	Conclusion
Basic bricks				

 frobeniusNormUpperBound(A, δ): for A ∈ C^{p×n} computes f an upper bound on the Frobenius norm of A such that

$$f = \|\mathbf{A}\|_F + \gamma$$

where $0 \le \gamma < \delta$, for a certain scalar absolute error bound δ , given in argument to the algorithm.

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples 0	Conclusion	
Outling					

- Problem statement
- 2 Algorithm of WCPG evaluation
- 3 Basic bricks
- 4 Numerical Examples

Problem statement Algorithm of WCPG evaluation		Basic bricks	Numerical Examples	Conclusion	
000 00000000		00000	•	00	
Examples					

	Example 1				Example	e 2
sizes n, p and q	n = 1	0, p = 11	l, $q = 1$	<i>n</i> =	12, $p = 1$	q = 25
$1- ho({f A})$		1.39 imes10	-2		8.65 imes 10	0 ⁻³
$max(\mathbf{S}_N)$		3.88 imes10	$)^{1}$		5.50 imes 1	09
$\min(\mathbf{S}_N)$		1.29 imes10) ⁰		1.0 imes 1	0 ⁰
ε	2^{-5}	2^{-53}	2^{-600}	2-!	⁵ 2 ⁻⁵³	2^{-600}
N	220	2153	29182	308	3 4141	47811
Inversion iterations	0	2	4		2 3	5
overall max precision (bits)	212	293	1401	254	4 355	1459
\mathbf{V}^{-1} max precision (bits)	106	173	727	148	3 204	756
\mathbf{P}_N max precision (bits)	64	84	639	64	1 86	640
S _N max precision (bits)	64	79	630	64	107	658
Overall execution time (sec)	0.11	1.53	60.06	0.8	5 11.54	473.20

Problem statement Algorithm of WCPG evaluation		Basic bricks	Numerical Examples	Conclusion	
000 00000000		00000	•	00	
Examples					

	Example 1				Examp	le 2
sizes <i>n</i> , <i>p</i> and <i>q</i>	n = 1	0, p = 11	I, q=1	<i>n</i> =	= 12, p =	1, $q = 25$
$1- ho({f A})$		1.39 imes10	-2		8.65 × 1	L0 ⁻³
$\max(\mathbf{S}_N)$		3.88 imes 10) ¹		5.50 imes	10 ⁹
$\min(\mathbf{S}_N)$		1.29 imes10	0 ⁰		1.0 imes 1	10 ⁰
έ	2^{-5}	2^{-53}	2^{-600}	2-	⁻⁵ 2 ⁻⁵³	2^{-600}
N	220	2153	29182	30	8 4141	47811
Inversion iterations	0	2	4		2 3	5
overall max precision (bits)	212	293	1401	25	4 355	1459
\mathbf{V}^{-1} max precision (bits)	106	173	727	14	8 204	756
\mathbf{P}_N max precision (bits)	64	84	639	6	4 86	640
\mathbf{S}_N max precision (bits)	64	79	630	6	4 107	658
Overall execution time (sec)	0.11	1.53	60.06	0.8	5 11.54	473.20

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples •	Conclusion
Examples				

	Example 1				Example	e 2
sizes <i>n</i> , <i>p</i> and <i>q</i>	n = 1	0, p = 11	, q = 1	<i>n</i> =	12, $p = 1$, q = 25
$1- ho({f A})$		$1.39 imes10^{\circ}$	-2		8.65 imes10	0-3
$max(\mathbf{S}_N)$		3.88 imes10	$)^{1}$		5.50 imes 1	.0 ⁹
$\min(\mathbf{S}_N)$		1.29 imes10) ⁰		1.0 imes 1	0 ⁰
ε	2^{-5}	2^{-53}	2^{-600}	2-!	⁵ 2 ⁻⁵³	2^{-600}
N	220	2153	29182	308	3 4141	47811
Inversion iterations	0	2	4		2 3	5
overall max precision (bits)	212	293	1401	254	4 355	1459
V^{-1} max precision (bits)	106	173	727	148	3 204	756
\mathbf{P}_N max precision (bits)	64	84	639	64	4 86	640
\mathbf{S}_N max precision (bits)	64	79	630	64	4 107	658
Overall execution time (sec)	0.11	1.53	60.06	0.8	5 11.54	473.20

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples •	Conclusion
Examples				

	Example 1				Example	e 2
sizes <i>n</i> , <i>p</i> and <i>q</i>	n = 1	0, p = 11	., $q=1$	<i>n</i> =	= 12, p = 1	q = 25
$1- ho({f A})$		1.39 imes10	-2		8.65 imes 1	0 ⁻³
$max(\mathbf{S}_N)$		3.88 imes 10	$)^{1}$		5.50 imes 1	10 ⁹
$\min(\mathbf{S}_N)$		1.29 imes 10) ⁰		1.0 imes 1	00
ε	2^{-5}	2^{-53}	2^{-600}	2-	⁵ 2 ⁻⁵³	2^{-600}
N	220	2153	29182	30	8 4141	47811
Inversion iterations	0	2	4		2 3	5
overall max precision (bits)	212	293	1401	25	4 355	1459
V^{-1} max precision (bits)	106	173	727	14	8 204	756
\mathbf{P}_N max precision (bits)	64	84	639	6	4 86	640
\mathbf{S}_N max precision (bits)	64	79	630	6	4 107	658
Overall execution time (sec)	0.11	1.53	60.06	0.8	5 11.54	473.20

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples •	Conclusion
Examples				

	Example 1				Exampl	e 2
sizes n, p and q	n = 1	0, p = 11	q=1	<i>n</i> =	= 12, p = 1	1, $q = 25$
$1- ho({f A})$		1.39 imes10	-2		8.65 imes 1	0-3
$max(\mathbf{S}_N)$		3.88 imes 10	$)^{1}$		5.50 imes	10 ⁹
$\min(\mathbf{S}_N)$		1.29 imes10) ⁰		1.0 imes 1	.00
ε	2^{-5}	2^{-53}	2^{-600}	2-	⁵ 2 ⁻⁵³	2^{-600}
N	220	2153	29182	30	8 4141	47811
Inversion iterations	0	2	4		2 3	5
overall max precision (bits)	212	293	1401	25	4 355	1459
\mathbf{V}^{-1} max precision (bits)	106	173	727	14	8 204	756
\mathbf{P}_N max precision (bits)	64	84	639	6	4 86	640
S _N max precision (bits)	64	79	630	6	4 107	658
Overall execution time (sec)	0.11	1.53	60.06	0.8	5 11.54	473.20

Problem statement	Algorithm of WCPG evaluation	Basic bricks 00000	Numerical Examples •	Conclusion
Examples				

	Example 1				Example	e 2
sizes n, p and q	n = 1	0, p = 11	l, $q = 1$	<i>n</i> =	12, $p = 1$, q = 25
$1- ho({f A})$		1.39 imes10	-2		8.65 imes 10	0-3
$max(\mathbf{S}_N)$		3.88 imes10	$)^{1}$		5.50 imes 1	.0 ⁹
$\min(\mathbf{S}_N)$		1.29 imes10) ⁰		1.0 imes 1	0 ⁰
ε	2^{-5}	2^{-53}	2^{-600}	2-!	⁵ 2 ⁻⁵³	2^{-600}
N	220	2153	29182	308	3 4141	47811
Inversion iterations	0	2	4		2 3	5
overall max precision (bits)	212	293	1401	254	4 355	1459
V^{-1} max precision (bits)	106	173	727	148	3 204	756
\mathbf{P}_N max precision (bits)	64	84	639	64	1 86	640
\mathbf{S}_N max precision (bits)	64	79	630	64	1 107	658
Overall execution time (sec)	0.11	1.53	60.06	0.8	5 11.54	473.20

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
000		00000	O	●○
Conclusion	and Perspectives			

Conclusion

- Rigorous evaluation of the WCPG matrix
- Direct formula for truncation order determination
- Implementation of a library in C

Perspectives

- Use a multiprecision eigensolver
- Formalize proofs in a Formal Proof Checker
- Other measures for filter analysis

Problem statement	Algorithm of WCPG evaluation	Basic bricks	Numerical Examples	Conclusion
				00

Thank you! Questions?

L_2 -norm evaluation

Another related problem is the reliable evaluation of the L_2 -norm. If **H** is a transfer function, then its L_2 -norm is defined by

$$\|\mathbf{H}\|_{2} \triangleq \sqrt{\frac{1}{2\pi} \int_{0}^{2\pi} \|\mathbf{H}(e^{j\omega})\|_{F}^{2} d\omega}$$

Parseval's theorem gives another expression when H is described with state-space matrices A, B, C, D:

$$\|\mathbf{H}\|_{2} = \sqrt{tr(\mathbf{C}\mathbf{W}_{c}\mathbf{C}^{\top} + \mathbf{D}\mathbf{D}^{\top})}$$
$$= \sqrt{tr(\mathbf{B}^{\top}\mathbf{W}_{o}\mathbf{B} + \mathbf{D}^{\top}\mathbf{D})}$$

where \mathbf{W}_c and \mathbf{W}_o are the controllability and observability Gramians of the system.

Gramians

• \mathbf{W}_c is the controllability Gramian of the system.

$$\mathbf{W}_{c} \triangleq \sum_{k=0}^{\infty} (\mathbf{A}^{k} \mathbf{B}) (\mathbf{A}^{k} \mathbf{B})^{\top}$$

 \mathbf{W}_c is the solution of the discrete-time Lyapunov equation

$$\mathbf{W}_{c} = \mathbf{A}\mathbf{W}_{c}\mathbf{A}^{\top} + \mathbf{B}\mathbf{B}^{\top}$$

• W_o is the observability Gramian of the system.

$$\mathbf{W}_{o} riangleq \sum_{k=0}^{\infty} (\mathbf{C}\mathbf{A}^{k})^{ op} (\mathbf{C}\mathbf{A}^{k})$$

 \mathbf{W}_o is the solution of the discrete-time Lyapunov equation

$$\mathbf{W}_o = \mathbf{A}^{ op} \mathbf{W}_o \mathbf{A} + \mathbf{C}^{ op} \mathbf{C}$$

Computation of the Gramians

The Gramians are usually computed by solving the discrete-time Lyapunov equation $\mathbf{X} = \mathbf{A}\mathbf{X}\mathbf{A}^{\top} + \mathbf{Q}$ The following methods can be used:

- solve (I − A ⊗ A)x = q where x = Vec(X) and q = Vec(Q)
 → numerically inefficient
- use infinite sum $\sum_{k=0}^{\infty} \mathbf{A}^k \mathbf{Q} \mathbf{A}^{k\top}$ \rightarrow may required a lot of computation
- use Hammarling's method, based on Schur decomposition of matrix A

 \rightarrow efficient, but required a deep analysis of the computational errors of the algorithm

see "Computational methods for linear matrix equations", V. Simoncini

Reliable computation of the L_2 -norm

Questions

- How to have a reliable evaluation of the *L*₂-norm in multiple precision
- How to proceed when **A**, **B**, **C** and **D** are interval matrices (small radii, containing previously computed errors)

Truncation error is the tail of the infinite sum:

$$\sum_{k>N} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right|$$

Truncation error is the tail of the infinite sum:

$$\sum_{k>N} \left| \mathbf{C} \mathbf{A}^k \mathbf{B} \right|$$

Suppose $\mathbf{A} = \mathbf{X}\mathbf{E}\mathbf{X}^{-1}$, where $\mathbf{E} = diag(\lambda_1, \dots, \lambda_n)$ is the eigenvalue matrix and \mathbf{X} is the eigenvector matrix. Then, $\mathbf{C}\mathbf{A}^k\mathbf{B} = \mathbf{C}\mathbf{X}\mathbf{E}^k\mathbf{X}^{-1}\mathbf{B} = \sum_{l=1}^n \mathbf{R}_l \lambda_l^k$

Truncation error is the tail of the infinite sum:

$$\sum_{k>N} \left| \mathsf{C} \mathsf{A}^k \mathsf{B} \right|$$

Suppose $\mathbf{A} = \mathbf{X}\mathbf{E}\mathbf{X}^{-1}$, where $\mathbf{E} = diag(\lambda_1, \dots, \lambda_n)$ is the eigenvalue matrix and \mathbf{X} is the eigenvector matrix. Then,

$$CA^{k}B = CXE^{k}X^{-1}B = \sum_{l=1}^{k} R_{l}\lambda_{l}^{k}$$

Bound on truncation error

$$\sum_{k>N} \left| \mathbf{C} \mathbf{A}^{k} \mathbf{B} \right| \leq \rho(\mathbf{A})^{N+1} \mathbf{N}$$
$$\mathbf{M} := \sum_{l=1}^{n} \frac{|\mathbf{R}_{l}|}{1 - |\boldsymbol{\lambda}_{l}|} \frac{|\boldsymbol{\lambda}_{l}|}{\rho(\mathbf{A})}$$

Truncation error is the tail of the infinite sum:

$$\sum_{k>N} \left| \mathsf{C} \mathsf{A}^k \mathsf{B} \right|$$

Suppose $\mathbf{A} = \mathbf{X}\mathbf{E}\mathbf{X}^{-1}$, where $\mathbf{E} = diag(\lambda_1, \dots, \lambda_n)$ is the eigenvalue matrix and \mathbf{X} is the eigenvector matrix. Then, $\mathbf{C}\mathbf{A}^k\mathbf{B} = \mathbf{C}\mathbf{X}\mathbf{E}^k\mathbf{X}^{-1}\mathbf{B} = \sum_{i=1}^n \mathbf{R}_i\lambda_i^k$

Bound on truncation error

$$\rho(\mathbf{A})^{N+1}\mathbf{M} \stackrel{!}{\leq} \varepsilon_1$$
$$\mathbf{M} := \sum_{l=1}^n \frac{|\mathbf{R}_l|}{1 - |\boldsymbol{\lambda}_l|} \frac{|\boldsymbol{\lambda}_l|}{\rho(\mathbf{A})}$$

Lower bound on truncation order

$$N \ge \left\lceil \frac{\log \frac{\varepsilon_1}{m}}{\log \rho(\mathbf{A})} \right\rceil$$
$$\mathbf{M} := \sum_{l=1}^{n} \frac{|\mathbf{R}_l|}{1 - |\boldsymbol{\lambda}_l|} \frac{|\boldsymbol{\lambda}_l|}{\rho(\mathbf{A})}$$

where *m* is defined as $m := \min_{i,j} |\mathbf{M}_{i,j}|$.

Lower bound on truncation order

$$N \ge \left\lceil \frac{\log \frac{\varepsilon_1}{m}}{\log \rho(\mathbf{A})} \right\rceil$$
$$\mathbf{M} := \sum_{l=1}^n \frac{|\mathbf{R}_l|}{1 - |\boldsymbol{\lambda}_l|} \frac{|\boldsymbol{\lambda}_l|}{\rho(\mathbf{A})}$$

where *m* is defined as $m := \min_{i,j} |\mathbf{M}_{i,j}|$.

Reliable evaluation

Interval Arithmetic and Rump's Theory of Verified Inclusions are used to determine a rigorous bound of N.

$$\mathbf{T} := \mathbf{V}^{-1}\mathbf{A}\mathbf{V} - \mathbf{\Delta}_2$$

$$\mathbf{T} := \mathbf{V}^{-1} \mathbf{A} \mathbf{V} - \mathbf{\Delta}_2$$

- $\bullet~V$ is some approximation on X
- Δ₂ represents the element-by-element errors due to the two matrix multiplications and the inversion of matrix V

$$\mathbf{T} := \mathbf{V}^{-1} \mathbf{A} \mathbf{V} - \mathbf{\Delta}_2$$

- $\bullet~V$ is some approximation on X
- Δ_2 represents the element-by-element errors due to the two matrix multiplications and the inversion of matrix V
- T diagonal in dominant with very small other elements
- $\bullet \ \left\| \mathbf{T} \right\|_2 \leq 1$

$$\mathbf{T} := \mathbf{V}^{-1}\mathbf{A}\mathbf{V} - \mathbf{\Delta}_2$$

 $\mathbf{A}^k = \mathbf{V}(\mathbf{T} + \mathbf{\Delta}_2)^k \mathbf{V}^{-1}$

The error of substitution of **A** by VTV^{-1} :

$$\sqrt{n}(N+1)(N+2) \|\mathbf{\Delta}_2\|_F \|\mathbf{C}\mathbf{V}\|_F \|\mathbf{V}^{-1}\mathbf{B}\|_F$$

$$\mathbf{T} := \mathbf{V}^{-1}\mathbf{A}\mathbf{V} - \mathbf{\Delta}_2$$

 $\mathbf{A}^k = \mathbf{V}(\mathbf{T} + \mathbf{\Delta}_2)^k \mathbf{V}^{-1}$

The error of substitution of **A** by VTV^{-1} :

$$\sqrt{n}(N+1)(N+2) \|\mathbf{\Delta}_2\|_F \|\mathbf{C}\mathbf{V}\|_F \|\mathbf{V}^{-1}\mathbf{B}\|_F \stackrel{!}{\leq} \varepsilon_2$$

$$\mathbf{T} := \mathbf{V}^{-1}\mathbf{A}\mathbf{V} - \mathbf{\Delta}_2$$

 $\mathbf{A}^k = \mathbf{V}(\mathbf{T} + \mathbf{\Delta}_2)^k \mathbf{V}^{-1}$

The error of substitution of **A** by VTV^{-1} :

$$\sqrt{n}(N+1)(N+2) \|\mathbf{\Delta}_2\|_F \|\mathbf{C}\mathbf{V}\|_F \|\mathbf{V}^{-1}\mathbf{B}\|_F \stackrel{!}{\leq} \varepsilon_2$$

A condition on the error-matrix $\mathbf{\Delta}_2$: $\|\mathbf{\Delta}_2\|_F \leq \frac{1}{\sqrt{n}(N+1)(N+2)} \frac{\varepsilon_2}{\|\mathbf{C}\mathbf{V}\|_F \|\mathbf{V}^{-1}\mathbf{B}\|_F}$

Step 3. Computing products C' and B'

$$\mathbf{C'} := \mathbf{CV} + \mathbf{\Delta}_{3_C}$$

 $\mathbf{B'} := \mathbf{V}^{-1}\mathbf{B} + \mathbf{\Delta}_{3_B}$

where $\mathbf{\Delta}_{3_C} \in \mathbb{C}^{p \times n}$ and $\mathbf{\Delta}_{3_B} \in \mathbb{C}^{n \times q}$ are error-matrices.

Bound on the multiplication errors Δ_{3_c} and Δ_{3_B} :

$$egin{aligned} \|oldsymbol{\Delta}_{3_{\mathcal{C}}}\|_{F} &\leq rac{1}{3\sqrt{n}}\cdotrac{1}{\mathcal{N}+1}rac{arepsilon_{3}}{\|oldsymbol{C}'\|_{F}} \ \|oldsymbol{\Delta}_{3_{\mathcal{B}}}\|_{F} &\leq rac{1}{3\sqrt{n}}\cdotrac{1}{\mathcal{N}+1}rac{arepsilon_{3}}{\|oldsymbol{B}'\|_{F}}. \end{aligned}$$

Step 4. Powering T

$$\mathbf{P}_k := \mathbf{T}^k - \mathbf{\Delta}_{\mathbf{4}_k}$$

 $\mathbf{\Delta}_{4_k} \in \mathbb{C}^{n \times n}$ error-matrix on matrix powers, including error propagation from the first to the last power.

$$\mathbf{P}_k = \mathbf{T}\mathbf{P}_{k-1} + \mathbf{\Gamma}_k,$$

where $\Gamma_k \in \mathbb{C}^{n \times n}$ is the error-matrix on the error of the matrix multiplication at step k.

Bound on the error-matrix Γ_k

$$\|\mathbf{\Gamma}_{k}\|_{F} \leq \frac{1}{\sqrt{n}} \cdot \frac{1}{N-1} \cdot \frac{1}{N+1} \cdot \frac{\varepsilon_{4}}{\|\mathbf{C'}\|_{F} \|\mathbf{B'}\|_{F}}$$
Step 5. Computing L_k

$$\mathbf{L}_k := \mathbf{C'}\mathbf{P}_k\mathbf{B'} + \mathbf{\Delta}_{\mathbf{5}_k},$$

where $\mathbf{\Delta}_{5_k} \in \mathbb{C}^{p \times q}$ is the matrix of element-by-element errors for the two matrix multiplications.

Step 6. Summation

$$\mathcal{S}_{\mathcal{N}} = |\mathbf{D}| + \sum_{l=0}^{\mathcal{N}} |\mathbf{L}_l| + \mathbf{\Delta}_6,$$

where the error-matrix $\mathbf{\Delta}_6 \in \mathbb{C}^{p \times q}$ represents the error of N + 1 absolute value accumulations.

Bound on the error matrix Δ_{6_k} $\Delta_{6_k} \leq rac{1}{N} arepsilon_6, \qquad \qquad k=1\dots N$