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Motivation

Motivation

?

Mathematical

function

Need to deal with

e Discretize functions and coefficients

e parametric errors
e computational errors

o Implementation under constraints

e software implementation
e hardware implementation

?

Target
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Motivation

Motivation

Different filter structures:

@ Direct Form I, Direct Form II

State-space

Wave, Lattice Wave, ...

p-operator: pDFIIt, pModal, pState-space...
LGS, LCW, etc.

They are equivalent in infinite precision but no more in finite
precision. The finite precision degradation depends on the
realization.
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Motivation

Motivation

Given transfer function and a target, we want:

o Represent various realizations

o Evaluate finite precision degradation

e Find an optimal realization
Tradeoft:

Error

Quality

Power consumption
Speed

etc.
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Specialized Implicit Framework (SIF) )
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Motivation

Outline

@ Motivation

© Specialized Implicit Framework
© Lattice Wave Digital Filters
@ LWDF-to-SIF convertion

© Example and comparison

O Summary
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SIF

SIF is:
@ Macroscopic description
o Based on state-space
o Explicit all the computations and their order

@ Any DFG can be transformed to this form

o Analytical derivation of measures

Jt(k+1) = Mz (k) + Nu(k)
He z(k+1) = Kt(k—i— 1) + Px(k) + Qu(k)
y(k) = Lt(k+1) + Rx(k) + Su(k)

Denote Z the matrix containing -J M N
all the coefficients ZA| K P Q
L R S
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SIF

SIF: measures

Measures

@ a priori measures
o transfer function sensitivity (based on g—g)

— stochastic measure, takes into account coefficient
wordlengths

e poles or zeros sensitivity (e.g based on % for a pole )\i>

— stochastic measure, takes into account coefficient
wordlengths

e RNG, ...
@ a posteriori measures

e Signal to Quantization Noise Ratio
e output error
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SIF

SIF': the rigorous filter error bound

WCPG theorem

Let H={A, B,C,D} be a BIBO stable MIMO state-space.
If VE u(k) < u component-wisely, then component-wisely

vk y(k) < (H) u,
where (H)) is the Worst-Case Peak Gain matrix of the system
and can be computed as

o0
(H) = D]+ ’CA’“B‘ .
k=0
Note: we can compute (H)) in arbitrary precision.
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SIF

SIF': the rigorous filter error bound

Exact filter:
Jt (k+1) Max (k)+ Nu(k)
H { xz (k+1)= Kt (k+ 1)+ Px (k) + Qu(k)
y (k)=Lt (k+1) + Rx (k) + Su(k)
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SIF

SIF': the rigorous filter error bound

Implemented filter:

Jt(k+1)= Ma* (k) + Nu(k) + e (k)
" { o' (k+1)= Kt*(k + 1)+ Px* (k) + Qu(k) + . (k)
y* (k)= Lt*(k + 1) + Ra* (k) + Su(k) +e,(k)

where €.(k), e;(k) and e,(k) are the computational errors.
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SIF

SIF': the rigorous filter error bound

Implemented filter:

Jt'(k+1)= Mz*(k)+ Nu(k)+e.(k)
W @k + )= KE(k+ D+ Par (k) + Quik) +e. (k)
y* (k)= Lt (k+1) + Rx*(k) + Su(k) +¢,(k)
where €.(k), e;(k) and e,(k) are the computational errors.
The output error

Ay(k) = y* (k) — y(k)
can be seen as the output of a MIMO filter H..
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SIF

SIF': the rigorous filter error bound

Implemented filter:
Jt(k+1)= Max*(k)+ Nu(k)+e:(k)
H* { z*(k+1)= Kt (k+ 1)+ Px* (k) + Qu(k) +e.,(k)
y' (k)= Lt (k+1) + Rx" (k) + Su(k) +¢e,(k)

where €.(k), e;(k) and e,(k) are the computational errors.
The output error

Ay(k) = y* (k) — y(k)
can be seen as the output of a MIMO filter H..

WCPG theorem on H. gives the output error interval:
Ay(k) < (He) e
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SIF

SIF: code generation

WCPG theorem gives a rigorous way to compute Most
Significant Bit:

my = [logy ((H) u)| +1
Equivalent technique: WCPG-scaling, it guarantees that no
overflows occur.
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SIF

SIF: code generation

WCPG theorem gives a rigorous way to compute Most
Significant Bit:

my = [logy ((H) u)| +1
Equivalent technique: WCPG-scaling, it guarantees that no
overflows occur.

Fixed Point Code Generator (FiPoGen)

Given wordlength and evaluation scheme
o Generates bit-accurate fixed-point algorithms
Given only evaluation scheme

e Optimizes the wordlength under certain criteria (e.g. area)

o Generates bit-accurate fixed-point algorithms
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SIF: from transfer function to Fixed-Point code

structures measures wordlengths target

transfer
function

. code
realization

choice
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SIF: from transfer function to Fixed-Point code

wordlengths target

structures measures
transfer d
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SIF: from transfer function to Fixed-Point code

wordlengths target

measures
structures

transfer

function code
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Motivation SIF LWDF LWDF-to-SIF Example and comparison Summary

Lattice Wave Digital Filters

Stage 2 Stage (n—1)
Y4 s | V24 (n-1)

Stage 0

Sl =

A v A v
Yo V3 s V2 (1)1

High-pass output

R R 1/2
S TN S T N

71 V5 ceee | Y2en—1
A v A v

@ @ @ Low-pass output
5

—1

1/2
L

2 Y6 s Y2n
B—T LB-T
Stage 1 Stage 3 Stage n
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Lattice Wave Digital Filters

!

v

ouTP2

OuUTP1

'

Example and comparison

Summary
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LWDF

Lattice Wave Digital Filters

Two-port adaptor: Richard’s structures

INP1_ 7N INP2 INP1 TP INP2
l . I
Ll
) \ 14
OUT1 Type 1: ouUT2 OUT1 Type 4: OUT2
1/2<~y<1 -1<y<-1/2
INP2 OUT2 a=1-~ a=~
v _{

INP1  OUTI INPL  —1 INP2 INP1 -1 INP2

o

OUT1 Type 2: ouT2 OUT1 Type 3: ouUT2
0<y<1/2 -1/2<9<0
a=1+~y a=—y
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LWDF

Lattice Wave Digital Filters

Two-port adaptor: Richard’s structures

INPL_ TN INP2 INPL (T INP2
l - I
w .
\ 4 \ 4

OUT1 Type 1: ouT2 OUT1 Type 4: OUT2

1/2<y<1 “l1<y<-1/2

NP2 OUTZ e U

7 _%

INP1L  OUTI INP1 -1 D) INP2 INP1 @ -1 INP2

OUT1 Type 2: ouT2
0<y<1/2
a=1+~

OUT1 Type 3: ouUT2
-1/2<~y<0
o = 7’\’,
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LWDF

Lattice Wave Digital Filters

Positive sides

o parallelizable

e modular, convenient for VLSI

o often referred to as stable
Drawbacks

o Studies of Fixed-Point implementation include complicated

infinite-precision optimization

e Comparison is difficult
Objectives

o Represent LWDF in terms of SIF

e Perform rigorous error analysis

o Instantly compare with other structures
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LWDF-to-SIF

LWDF-to-SIF convertion
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LWDF-to-SIF

LWDF-to-SIF convertion

@ SIF representation for

Stage 2 Stage (n—1)
subsystems of Type A and :“B‘i} rT
Tvpe B I o |
yp ! .| Y2 (n—1) |
Stage 0 !_ —— JI lL = J
T _fh_ =k Tﬁ“ T
'r 1R [ S X
! 1! 1! |
I 7 o 1 I’%(n—l)—l | Hinl
| 1! | | igh-pass output
1Y T N 1/2
Input _ | _ T — A& T —
.0 Sk AT sl ST R
: Vi :: s : : Yon—1 ‘: 1/2
:él : :@ : :% : Low-pass output
b S xR 2 SIS Ay X
|’ 2o N e '~~|’ 2n |l
i
et et
U oy [ ey | -
Stage Stage 3 Sta
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LWDF-to-SIF

LWDF-to-SIF convertion

@ SIF representation for

Stage 2 Stage (n— 1)
M L ~— T 1
subsystems of Type A and i L !
| |
Type B : Y4 :: 12-(n—1) :
@ Cascade subsystems into -2 i AT
'r@l nkd | 1] |
stages \ EFLISER Ay S N
Il ‘: : 73 : : 12(n-1)-1 : N
| " \ High-pass output
LA _ LA | - -
RS A
Inpur'_ e SR e T"";‘*_ —
] 1 I I
] " ] |’ 163 |---- 1| Y2:n—1
| 1 ¥ | | ¥
[ g oL | Low-pass output
] 1] | 1 |
| | | | | |
L e el e )
IL ] L | | L |
I it 1] I I i [}
Stage 1 Stage 3 Stage n
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LWDF-to-SIF convertion

SIF representation for
subsystems of Type A and ARt v Sl ¥
| |
Type B : Ya Y2-(n—1) :
Cascade subsystems into | |
Y | |
stages I L} L v
! 3 - 2(n-1)-1
Cascade stages into branches i _7 _‘_’ — _e(_) _'
Inpur'___ g [ vy vl
|
:’ 1 ’ 15 Y2:n—1
\ ¥ ¥
i :
|
i 72 ‘ ’ 6 ‘ ’ Y2n ‘:
|
e bt b

High-pass output

Low-pass output
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LWDF-to-SIF convertion

@ SIF representation for

subsystems of Type A and . ‘ Eﬁu
Type B ! :
ype : Ya e | Y2(n=1) ()
Cascade subsystems int P '
@ Cascade subsystems into :TBI é !
stages ! ’4 !
0 V3 -ees | V2(n-1)-1
@ Cascade stages into branches L - 4 | High-pass output
e - = TN T TS T - 1/2
@ Cascade branches into D o B s B < ;
low/high pass filter I, - ‘ o |! B "
| | — "
i @ : Low-pass output
|
:’ 72 ‘ ’ 76 ‘ Y2n ‘:
|
el bl el
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LWDF-to-SIF

LWDF-to-SIF convertion: example

Convert DFGs of two adaptors into SIFs:

(k)

ua(k)

uy (k)

f
z(k+1)

ya2(k)

a(k+1)
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LWDF-to-SIF

LWDF-to-SIF convertion: example

Convert DFGs of two adaptors into SIFs:

ur(k) /0N uz (k) u(k) D\ v (k)
] t+ 1’1 S B
1 t
to ta
& il @
y1(k) a(k+1) ya(k) y(k) a(k+1)

—JaiMaiNa
Zi2| Ka i PaiQa | =
"La (RaiSa
—Jp MpiNp
Zp2 | Ks PsiQs | =
Lp RpiSp
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LWDF-to-SIF

Cascading SIFs:
Z1:{J1,K1,...,Sl} wa(k)

ya(k) =up(k)

Zy={Jy,Ko,...,S5} — M
Then,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Note: matrix Z is extremely sparse.

Hp
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Example and comparison

Example and comparison

Reference filter: low-pass 5" order Butterworth filter with
cutoff frequency 0.1.
Structures for the comparison:

o LWDF

@ state-space

@ p-Direct Form II transposed
o Direct Form I

Normalized (i.e. all coefficients have the same wordlength)
measures:

e transfer function error: 62A I
@ pole error: 52A|)\|

@ output error: Ky
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Example and comparison

Example and comparison

LWDF, Z is 22 x 22 State-space, Z is 12 x 12
Z- Z-

DFI, Z is 12 x 12 + pDFIIt, 7 is 12 x 12
) ........... )
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Example and comparison

Example and comparison

Realization size(Z) coeff. 53y 52A‘ Al A,
LWDF  22x22 ) 0. 3151 0.56 1229
state-space  6x 6 36 1.15 5.75 23.33
pDFIIt 11x11 11 0.09 0.45 943
DFI 12x12 11 1.42e+4-6 - 7.961
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Summary

Conclusion and perspectives

Conclusion:
o LWDF converted to SIF
o Normalized sensitivity and output error measures applied
o Comparison with several popular structures presented
Perspectives:

e Use VHDL code generator (FloPoCo) to compare hardware
implementations

o Apply p-operator to LWDF
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Thank you!
Questions?
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