
Determining Fixed-Point Formats using the
Worst-Case Peak Gain measure

Anastasia Volkova, Thibault Hilaire, Christoph Lauter

Sorbonne Universités, University Pierre and Marie Curie, LIP6,
Paris, France

ASILOMAR 49
November 10, 2015

1/18

Motivation

0 1 0 1 1
1 1 1 0 1
0 0 1 1 0
1 0 0 1 1

Filter implementation flow:

Transfer function generation

! Coefficient quantization

State-space, DFI, DFII, . . .

! Large variety of structures with no common quality criteria

Software or Hardware implementation

! Constraints: power consumption, area, error, speed, etc.

2/18

Motivation

0 1 0 1 1
1 1 1 0 1
0 0 1 1 0
1 0 0 1 1

Filter implementation flow:

Transfer function generation

! Coefficient quantization

State-space, DFI, DFII, . . .

! Large variety of structures with no common quality criteria

Software or Hardware implementation

! Constraints: power consumption, area, error, speed, etc.

2/18

Motivation

0 1 0 1 1
1 1 1 0 1
0 0 1 1 0
1 0 0 1 1

Filter implementation flow:

Transfer function generation

! Coefficient quantization

State-space, DFI, DFII, . . .

! Large variety of structures with no common quality criteria

Software or Hardware implementation

! Constraints: power consumption, area, error, speed, etc.

2/18

Motivation

0 1 0 1 1
1 1 1 0 1
0 0 1 1 0
1 0 0 1 1

Filter implementation flow:

Transfer function generation

! Coefficient quantization

State-space, DFI, DFII, . . .

! Large variety of structures with no common quality criteria

Software or Hardware implementation

! Constraints: power consumption, area, error, speed, etc.

2/18

Motivation

0 1 0 1 1
1 1 1 0 1
0 0 1 1 0
1 0 0 1 1

Filter implementation flow:

Transfer function generation

! Coefficient quantization

State-space, DFI, DFII, . . .

! Large variety of structures with no common quality criteria

Software or Hardware implementation

! Constraints: power consumption, area, error, speed, etc.

2/18

Motivation

0 1 0 1 1
1 1 1 0 1
0 0 1 1 0
1 0 0 1 1

Filter implementation flow:

Transfer function generation

! Coefficient quantization

State-space, DFI, DFII, . . .

! Large variety of structures with no common quality criteria

Software or Hardware implementation

! Constraints: power consumption, area, error, speed, etc.

2/18

Motivation

0 1 0 1 1
1 1 1 0 1
0 0 1 1 0
1 0 0 1 1

Filter implementation flow:

Transfer function generation

! Coefficient quantization

State-space, DFI, DFII, . . .

! Large variety of structures with no common quality criteria

Software or Hardware implementation

! Constraints: power consumption, area, error, speed, etc.

2/18

Motivation: Automatized filter implementation flow

Focus on Fixed-Point realization.
Optimization of wordlengths:

Take more - pay more

Take less - overflow risk

What we want in the end:

Rigorous algorithm for Fixed-Point
Formats (FxPF) determination

Integration into automatized code
generator for filters

Multiple wordlength paradigm

3/18

Motivation: Automatized filter implementation flow

Focus on Fixed-Point realization.

Optimization of wordlengths:

Take more - pay more

Take less - overflow risk

What we want in the end:

Rigorous algorithm for Fixed-Point
Formats (FxPF) determination

Integration into automatized code
generator for filters

Multiple wordlength paradigm

3/18

Motivation: Automatized filter implementation flow

Focus on Fixed-Point realization.
Optimization of wordlengths:

Take more - pay more

Take less - overflow risk

What we want in the end:

Rigorous algorithm for Fixed-Point
Formats (FxPF) determination

Integration into automatized code
generator for filters

Multiple wordlength paradigm

3/18

LTI filters

H := (A,B,C,D) is a Bounded Input Bounded Output LTI
filter in state-space representation:

H
{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

with q inputs, n states and p outputs and state matrices

4/18

Basic brick: interval through filter

The Worst-Case Peak Gain theorem

Time

A
m

p
li
tu

d
e 8k, |u(k)|  ū

Input u(k)

5/18

Basic brick: interval through filter

The Worst-Case Peak Gain theorem

H y(k)u(k)

amplification/attenuation
Time

A
m

p
li
tu

d
e 8k, |u(k)|  ū

Input u(k)

5/18

Basic brick: interval through filter

The Worst-Case Peak Gain theorem

Time

A
m

p
li
tu

d
e

Output y(k)

H y(k)u(k)

amplification/attenuation
Time

A
m

p
li
tu

d
e 8k, |u(k)|  ū

Input u(k)

5/18

Basic brick: interval through filter

The Worst-Case Peak Gain theorem

Time

A
m

p
li
tu

d
e

Output y(k)

8k, |y(k)|  hhHii ū

H y(k)u(k)

amplification/attenuation

hhHii = |D| +
P1

k=0 |CAkB|

Worst-Case Peak Gain

Time

A
m

p
li
tu

d
e 8k, |u(k)|  ū

Input u(k)

5/18

Two’s complement Fixed-Point arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

t = −2mtm +

m−1∑

i=`

2iti

Wordlength: w

Most Significant Bit position: m

Least Significant Bit position: ` := m− w + 1

∀k, y(k) ∈ [−2m; 2m − 2m−w+1]

6/18

Two’s complement Fixed-Point arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

t = −2mtm +

m−1∑

i=`

2iti

quantization step: 2`

t represented by integer T = t · 2`
T ∈ [−2m; 2m − 2`] ∩ Z

∀k, y(k) ∈ [−2m; 2m − 2m−w+1]

6/18

Two’s complement Fixed-Point arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

t = −2mtm +

m−1∑

i=`

2iti

y(k) ∈ R

wordlength w bits

minimal Fixed-Point Format (FPF) is the least m:

∀k, y(k) ∈ [−2m; 2m − 2m−w+1]

6/18

Problem statement

Let H := (A,B,C,D) be a LTI filter:

H
{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

Given

wordlength constraints wx and wy

for each state and output variable

input domain ū

we need to determine the minimal FPF for all variables of filter
H, i.e. find the least mx and my such that

∀k, xi(k) ∈ [−2mxi ; 2mxi − 2mxi−wxi+1]

∀k, yi(k) ∈ [−2myi ; 2myi − 2myi−wyi+1].

7/18

Modification of H

Let ζ(k) :=

(
x(k)
y(k)

)
be a vertical concatenation of state and

output vectors.

Then the state-space takes the following form:

Hζ




x(k + 1) = Ax(k) + Bu(k)

ζ(k) =

(
I
C

)
x(k) +

(
0
D

)
u(k)

We seek to determine the least mζ such that

∀k, |ζi(k)| 6 2mζi − 2mζi
−wi+1.

8/18

Modification of H

Let ζ(k) :=

(
x(k)
y(k)

)
be a vertical concatenation of state and

output vectors.

Then the state-space takes the following form:

Hζ




x(k + 1) = Ax(k) + Bu(k)

ζ(k) =

(
I
C

)
x(k) +

(
0
D

)
u(k)

We seek to determine the least mζ such that

∀k, |ζi(k)| 6 2mζi − 2mζi
−wi+1.

8/18

Modification of H

Let ζ(k) :=

(
x(k)
y(k)

)
be a vertical concatenation of state and

output vectors.

Then the state-space takes the following form:

Hζ




x(k + 1) = Ax(k) + Bu(k)

ζ(k) =

(
I
C

)
x(k) +

(
0
D

)
u(k)

We seek to determine the least mζ such that

∀k, |ζi(k)| 6 2mζi − 2mζi
−wi+1.

8/18

Computing the MSB using the WCPG theorem

Applying the WCPG theorem on filter Hζ gives

∀k, |ζi(k)| 6 (〈〈Hζ〉〉 ū)i

Therefore, the smallest mζi satisfying

(〈〈Hζ〉〉 ū)i 6 2mζi − 2mζi
−wi+1,

will satisfy the wordlength constraints.

We can compute mζi with

mζi =
⌈

log2 (〈〈Hζ〉〉 ū)i − log2

(
1− 21−wζi

)⌉
.

9/18

Computing the MSB using the WCPG theorem

Applying the WCPG theorem on filter Hζ gives

∀k, |ζi(k)| 6 (〈〈Hζ〉〉 ū)i

Therefore, the smallest mζi satisfying

(〈〈Hζ〉〉 ū)i 6 2mζi − 2mζi
−wi+1,

will satisfy the wordlength constraints.

We can compute mζi with

mζi =
⌈

log2 (〈〈Hζ〉〉 ū)i − log2

(
1− 21−wζi

)⌉
.

9/18

Computing the MSB using the WCPG theorem

Applying the WCPG theorem on filter Hζ gives

∀k, |ζi(k)| 6 (〈〈Hζ〉〉 ū)i

Therefore, the smallest mζi satisfying

(〈〈Hζ〉〉 ū)i 6 2mζi − 2mζi
−wi+1,

will satisfy the wordlength constraints.

We can compute mζi with

mζi =
⌈

log2 (〈〈Hζ〉〉 ū)i − log2

(
1− 21−wζi

)⌉
.

9/18

Taking the quantization errors into account

The exact filter Hζ is:

Hζ

♦




x

♦

(k + 1) =

♦mx

(

Ax

♦

(k) +Bu(k)

)

ζ

♦

(k) =

♦mζ

(

(
I
C

)
x

♦(k)

+

(
0
D

)
u(k)

)

where ♦m is some operator ensuring faithful rounding:

|♦m(x)− x| 6 2m−w+1.

It holds

H♦ζ




x♦(k + 1) = Ax♦(k) +Bu(k) + εx(k)

ζ♦(k) =

(
I
C

)
x♦(k) +

(
0
D

)
u(k) +

(
εx(k)
εy(k)

)

with

|εx(k)| 6 2mx−wx+1 and |εy(k)| 6 2my−wy+1.

10/18

Taking the quantization errors into account

The actually implemented filter H♦ζ is:

Hζ♦



x♦(k + 1) = ♦mx

(
Ax♦(k) +Bu(k)

)

ζ♦(k) = ♦mζ

((
I
C

)
x♦(k) +

(
0
D

)
u(k)

)

where ♦m is some operator ensuring faithful rounding:

|♦m(x)− x| 6 2m−w+1.

It holds

H♦ζ




x♦(k + 1) = Ax♦(k) +Bu(k) + εx(k)

ζ♦(k) =

(
I
C

)
x♦(k) +

(
0
D

)
u(k) +

(
εx(k)
εy(k)

)

with

|εx(k)| 6 2mx−wx+1 and |εy(k)| 6 2my−wy+1.

10/18

Taking the quantization errors into account

The actually implemented filter H♦ζ is:

Hζ♦



x♦(k + 1) = ♦mx

(
Ax♦(k) +Bu(k)

)

ζ♦(k) = ♦mζ

((
I
C

)
x♦(k) +

(
0
D

)
u(k)

)

where ♦m is some operator ensuring faithful rounding:

|♦m(x)− x| 6 2m−w+1.

It holds

H♦ζ




x♦(k + 1) = Ax♦(k) +Bu(k) + εx(k)

ζ♦(k) =

(
I
C

)
x♦(k) +

(
0
D

)
u(k) +

(
εx(k)
εy(k)

)

with

|εx(k)| 6 2mx−wx+1 and |εy(k)| 6 2my−wy+1.

10/18

Implemented filter decomposition

⇣⌃(k)u(k) H⌃
⇣

! Filter H∆ depends on the MSBs of filter Hζ

11/18

Implemented filter decomposition

⇣⌃(k)u(k) H⌃
⇣

! Filter H∆ depends on the MSBs of filter Hζ

11/18

Implemented filter decomposition

⇣⌃(k)u(k) H⌃
⇣

q�1

X(k + 1) X(k)

A

! Filter H∆ depends on the MSBs of filter Hζ

11/18

Implemented filter decomposition

⇣⌃(k)u(k) H⌃
⇣

q�1

X(k + 1) X(k)

A

H⇣

H�

⇣⌃(k)

u(k) ⇣(k)

�⇣(k)

✓
"x(k)
"y(k)

◆

! Filter H∆ depends on the MSBs of filter Hζ

11/18

Implemented filter decomposition

⇣⌃(k)u(k) H⌃
⇣

q�1

X(k + 1) X(k)

A

H⇣

H�

⇣⌃(k)

u(k) ⇣(k)

�⇣(k)

✓
"x(k)
"y(k)

◆

m⇣

! Filter H∆ depends on the MSBs of filter Hζ

11/18

Implemented filter decomposition

⇣⌃(k)u(k) H⌃
⇣

q�1

X(k + 1) X(k)

A

H⇣

H�

⇣⌃(k)

u(k) ⇣(k)

�⇣(k)

✓
"x(k)
"y(k)

◆

m⇣

! Filter H∆ depends on the MSBs of filter Hζ

11/18

Implemented filter decomposition

⇣⌃(k)u(k) H⌃
⇣

q�1

X(k + 1) X(k)

A

H⇣

H�

⇣⌃(k)

u(k) ⇣(k)

�⇣(k)

✓
"x(k)
"y(k)

◆

m⇣

! Filter H∆ depends on the MSBs of filter Hζ

11/18

Two step approach

Step 1 Determine the MSBs mζ

for the exact filter Hζ ,
applying the WCPG
theorem;

Step 2 Compute the error-filter,
induced by the format mζ

and deduce the FPF of the
implemented filter H♦ζ

H⇣

H�

⇣⌃(k)

u(k) ⇣(k)

�⇣(k)

✓
"x(k)
"y(k)

◆

m⇣

H⇣

H�

⇣⌃(k)

u(k) ⇣(k)

�⇣(k)

✓
"x(k)
"y(k)

◆

m⇣

12/18

MSB computation error analysis

m⇣i
=

⌃
log2 (hhH⇣ii ū)i + log2

�
1� 21�wi

�⌥

Adjust error term εWCPG in order to be at most off by one.

13/18

MSB computation error analysis

m⇣i
=

⌃
log2 (hhH⇣ii ū)i + log2

�
1� 21�wi

�⌥
| {z }

\hhH⇣ii+ "WCPG

Adjust error term εWCPG in order to be at most off by one.

13/18

MSB computation error analysis

m⇣i
=

⌃
log2 (hhH⇣ii ū)i + log2

�
1� 21�wi

�⌥
| {z }

\hhH⇣ii+ "WCPG

cm⇣i
=

⌃
log2 (hhH⇣ii ū)i + log2

�
1� 21�wi

�

+ log2

✓
1 +

("WCPG · ū)i

(hhH⇣ii ū)i

◆⇡

Adjust error term εWCPG in order to be at most off by one.

13/18

MSB computation error analysis

m⇣i
=

⌃
log2 (hhH⇣ii ū)i + log2

�
1� 21�wi

�⌥
| {z }

\hhH⇣ii+ "WCPG

cm⇣i
=

⌃
log2 (hhH⇣ii ū)i + log2

�
1� 21�wi

�

+ log2

✓
1 +

("WCPG · ū)i

(hhH⇣ii ū)i

◆⇡

= m⇣i
+ d. . .e

|{z}
2{0,1}

Adjust error term εWCPG in order to be at most off by one.

13/18

MSB computation error analysis

m⇣i
=

⌃
log2 (hhH⇣ii ū)i + log2

�
1� 21�wi

�⌥
| {z }

\hhH⇣ii+ "WCPG

cm⇣i
=

⌃
log2 (hhH⇣ii ū)i + log2

�
1� 21�wi

�

+ log2

✓
1 +

("WCPG · ū)i

(hhH⇣ii ū)i

◆⇡

= m⇣i
+ d. . .e

|{z}
2{0,1}

Adjust error term εWCPG in order to be at most off by one.

13/18

Algorithm

Step 1 Determine the MSBs mζ for the
exact filter Hζ , applying the
WCPG theorem;

Step 2 Compute the error-filter H∆,
induced by the format mζ and
deduce the MSB m♦ζ of the
implemented filter;

Step 3 If m♦ζi == mζi then return m♦ζi
otherwise mζi ←mζi + 1 and go
to Step 2.

H⇣

H�

⇣⌃(k)

u(k) ⇣(k)

�⇣(k)

✓
"x(k)
"y(k)

◆

m⇣

H⇣

H�

⇣⌃(k)

u(k) ⇣(k)

�⇣(k)

✓
"x(k)
"y(k)

◆

m⇣

14/18

Numerical examples

Example:

Random filter with 6 states, 1 input, 3 outputs

ū = 3.7776, wordlengths set to 7 bits

m⇣ = (4, 4, 4, 4, 2, 3, 6, 5, 5)

m⌃
⇣ = (4, 5, 4, 4, 2, 3, 6, 5, 5)

15/18

Numerical examples

Example:

Random filter with 6 states, 1 input, 3 outputs

ū = 3.7776, wordlengths set to 7 bits

m⇣ = (4, 4, 4, 4, 2, 3, 6, 5, 5)

m⌃
⇣ = (4, 5, 4, 4, 2, 3, 6, 5, 5)

m⌃
⇣ = (4, 5, 5, 4, 3, 4, 6, 5, 5)

After 3 iterations:

15/18

Numerical examples

x̄2

x⌃
2 (k)

x2(k)

x̄⌃
2

After 3 iterations:

16/18

Conclusion and Perspectives

Conclusion

Rigorous procedure for Fixed-Point Formats determination

Filter computation errors are taken into account,
ensuring that no overflow occurs

Multiple-wordlength paradigm

Perspectives

Integrate into optimization procedures in automatic
workflow

Solve off-by-one problem

17/18

Thank you!
Questions?

18/18

