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Filter implementation flow:

o Transfer function generation

! Coefficient quantization
e State-space, DFI, DFII, ...

! Large variety of structures with no common quality criteria
o Software or Hardware implementation

! Constraints: power consumption, area, error, speed, etc.
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Focus on Fixed-Point realization.
Optimization of wordlengths:

e Take more - pay more

o Take less - overflow risk

What we want in the end:

o Rigorous algorithm for Fixed-Point
Formats (FxPF) determination

e Integration into automatized code
generator for filters

e Multiple wordlength paradigm
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LTT filters

H = (A,B,C, D) is a Bounded Input Bounded Output LTI
filter in state-space representation:

’H{ x(k+1) = Axz(k)+ Bu(k)
y(k) = Cz(k)+ Du(k)

with ¢ inputs, n states and p outputs and state matrices
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amplification/attenuation
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Worst-Case Peak Gain

((H)) = D]+ 342, |CA*B]

Output y(k)
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Two’s complement Fixed-Point arithmetic

—om 2m71 20 271 2[
BLTTTT] 11
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b= =27ty + Y 2
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e Wordlength: w
o Most Significant Bit position: m
o Least Significant Bit position: £:=m —w + 1
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e quantization step: 2¢
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Two’s complement Fixed-Point arithmetic

—om 2m71 20 271 2[
BLTTTT] 11
é m+1 ” 4 i
m—1
b= =27ty + Y 2
i=L

o y(k) eR
e wordlength w bits

e minimal Fixed-Point Format (FPF) is the least m:

Vk, y(k) € [-2m;2m — gmmwhl]
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Problem statement
Let H := (A, B,C, D) be a LTI filter:

%{ x(k+1) = Ax(k)+ Bu(k)
y(k) = Cux(k)+ Du(k)

Given

e wordlength constraints w, and w,
for each state and output variable

e input domain u

we need to determine the minimal FPF for all variables of filter
H, i.e. find the least m, and m, such that

Vh, k) €[22 ]
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Modification of H

Let ¢(k) := (k) be a vertical concatenation of state and
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Modification of H

Let ¢(k) := <zg]]3> be a vertical concatenation of state and
output vectors.

Then the state-space takes the following form:

z(k+1) = Az(k) + Bu(k)
U aw = (§)et + (p)u

We seek to determine the least m¢ such that

vk, |Cz(k)| < 2™ — ngi—wi-i-l.
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Computing the MSB using the WCPG theorem

Applying the WCPG theorem on filter H, gives

VE, [Ci(k)| < ((Hc) ),
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Computing the MSB using the WCPG theorem

Applying the WCPG theorem on filter H¢ gives
vk, [Ci(k)] < ((He) ),
Therefore, the smallest m, satisfying
((He) w); < 2mes —2ma—witd,
will satisfy the wordlength constraints.

We can compute m¢, with

my, = [logy ((He) @), —logy (1 —2'"4)].
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Taking the quantization errors into account
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Taking the quantization errors into account

The actually implemented filter ’H? is:
2%k +1) = Om, (Az°(k) + Bu(k))
Heo

) = om (&) + () ut)

where ¢, is some operator ensuring faithful rounding:
|Om () — x| < 2mwH,
It holds
{ x0(k+1) = Ax®(k)+ Bu(k) +e.(k
He

o = (G (o ()

lex (k)| < ome—wz+1 o4 |Ey(k)| < omy—wy+1

with
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Implemented filter decomposition
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Two step approach

Step 1

Step 2

Determine the MSBs m
for the exact filter H,
applying the WCPG
theorem;

Compute the error-filter,
induced by the format m
and deduce the FPF of the
implemented filter ’H?
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MSB computation error analysis

my, = [logy ((Hc) ), +logy (1—2'7)]
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MSB computation error analysis

me, = [logy ((Hc) @), +logy (1 —217%)]
——

—

((H¢)) +ewepa

me, = [logy ((He) w), + log2 (1—2'7w)

6 u
+ 10g2 < WCPC >—‘

=mg, +
\~\,_/
€{0,1}

13/18



MSB computation error analysis

me, = [logy ((Hc) @), +logy (1 —217%)]
——

—

((H¢)) +ewepa

my, = [logy ((Hc) @), + 10g2 (1-2'7)

o1 )

=myg, + [
\/
€{0,1}

Adjust error term ey cpg in order to be at most off by one. J
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Algorithm

Step 1

Step 2

Step 3

Determine the MSBs m for the
exact filter H¢, applying the
WCPG theorem;

Compute the error-filter Ha,
induced by the format m; and
deduce the MSB mg of the
implemented filter;

If mg == my, then return moi
otherwise mg¢, <~ m¢, +1 and g
to Step 2.
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Numerical examples

Example:
e Random filter with 6 states, 1 input, 3 outputs
e u = 3.7776, wordlengths set to 7 bits

me=(4, 4, 4, 4, 2, 3, 6, 5, 5)

mg =4, 5, 4, 4, 2, 3, 6, 5, b)
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Numerical examples

Example:
e Random filter with 6 states, 1 input, 3 outputs
e u = 3.7776, wordlengths set to 7 bits

me=(4, 4, 4, 4, 2, 3, 6, 5, 5)

mg =4, 5, 4, 4, 2, 3, 6, 5, b)
After 3 iterations:
mg =4, 5, 5, 4, 3, 4, 6, 5, b)
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Conclusion and Perspectives

Conclusion
e Rigorous procedure for Fixed-Point Formats determination

o Filter computation errors are taken into account,
ensuring that no overflow occurs

e Multiple-wordlength paradigm

Perspectives

o Integrate into optimization procedures in automatic
workflow

@ Solve off-by-one problem
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Thank youl
Questions?
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