Reliable evaluation of the L_2 -norm of a linear filter Internship, 2016-2017

- Advisors: Thibault Hilaire (thibault.hilaire@lip6.fr), Anastasiia Volkova (anastasia.volkova@lip6.fr)
- **Keywords:** error analysis, floating-point multi-precision arithmetic, linear algebra, Lyapunov equation.

Context

Let H be a stable linear filter/controller with input/output relationship given by:

$$\begin{cases} \boldsymbol{x}(k+1) &= \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{B}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) &= \boldsymbol{C}\boldsymbol{x}(k) + \boldsymbol{D}\boldsymbol{u}(k) \end{cases}$$

where $\boldsymbol{u}(k)$, $\boldsymbol{x}(k)$ and $\boldsymbol{y}(k)$ are the input, state and output vectors of the filter at time k, and A, B, C and D some matrices defining the filter.

The L_2 -norm of this filter can be computed by

$$|H||_2 = \sqrt{tr\left(\boldsymbol{C}\boldsymbol{W}\boldsymbol{C}^\top + \boldsymbol{D}\boldsymbol{D}^\top\right)} \tag{1}$$

where \boldsymbol{W} is the matrix solution of the discrete Lyapunov equation:

$$W = AWA^{ op} + BB^{ op}$$

or equivalently

$$\boldsymbol{W} = \sum_{k=0}^{\infty} \boldsymbol{A}^k \boldsymbol{B} \boldsymbol{B}^\top \boldsymbol{A}^{\top k}.$$
 (3)

This measure is important in the context of the implementation of linear filters/controllers with finite word-length arithmetic, such as fixed-point or floating-point arithmetic. It is used to evaluate how finite precision modifies the filter.

Subject

The aim of this internship is to provide an efficient and reliable evaluation of this norm (*i.e.* provide a C or Python code evaluating this norm and the associated error analysis):

- a) We will first use a naive method to solve the Lyapunov equation (2), solving a linear system with interval multi-precision arithmetic (using MPFI or Arb[1] library). Then the $||H||_2$ can be computed. The internal precision of the computation will be discussed (in order to obtain a reliable result up to a given ε).
- b) Then, we will study the various efficient algorithms[2, 3] used to solve the Lyapunov equation (based on LU and Schur decomposition, etc.). One of them will be implemented with interval multi-precision arithmetic.
- c) Finally, technics used in [4] can be used to compute the according to $||H||_2$ with equation (3) instead of (2). The two methods will be compared.

References

- F. Johansson. Arb: a C library for ball arithmetic. ACM Communications in Computer Algebra, 2013.
- [2] V. Simoncini Computational Methods for Linear Matrix Equations SIAM Review, 2014.
- [3] S. Hammarling. Numerical solution of the discrete-time, convergent, nonnegative definite Lyapunov equation. In Systems & Control Letters, 17, 1991.
- [4] Volkova, Anastasia and Hilaire, Thibault and Lauter, Christoph Q. Reliable evaluation of the Worst-Case Peak Gain matrix in multiple precision 22nd IEEE Symposium on Computer Arithmetic, Jun 2015, Lyon, France. 2015

(2)